整理一些定理和公式

二项式反演公式:

\[g_n=\sum^n_{i=0}(-1)^iC^i_nf_i\Leftrightarrow f_n=\sum^n_{i=0}(-1)^iC^i_{n}g_i\]
这个形式高度对称,它还有一个等价形式比较常用
\[g_n=\sum^n_{i=0}C^i_nf_i\Rightarrow f_n=\sum^n_{i=0}(-1)^{n-i}C^i_ng_i\]

错排公式

错排问题又称伯努利错装信封问题。这个问题有很多不同的题面,下面是其中一种

伯努利错装信封问题

有一个粗心的邮差让\(n\)封信从信封中掉了出来,但他并不知道每一封信对应着哪一个信封。不负责任的他随机地把信胡乱塞进信封里。问一共有多少种装信的方案使得信全部装进了不同的信封。

我们记错排数为\(\{D_n\}\),表示将n封信全部装错方案数量,利用二项式公式可推得
\[D_n=n!\sum^n_{i=0}\frac{(-1)^i}{i!}\]

第二类斯特林数

\(n\)个不同的球放进\(m\)个不同的盒子,保证盒子非空,求方案数。

\(n\)个不同的球放进\(m\)个不同的盒子里的方案总数为\(Q^m_{n}\)
同样可以利用二项式反演公式可得
\[Q^m_n=\sum^m_{i=0}(-1)^{m-i}C^i_mi^n\]

第二类斯特林数指的是将\(n\)个不同的球放进\(m\)个无差别的盒子,保证盒子非空,求方案数。

只要将有差别的\(Q^m_n\)除以盒子的排列数\(m!\)就是答案,即有第二类斯特林数\(S^m_m\):
\[S^m_n=\frac{1}{m!}\sum^m_{i=0}(-1)^{m-1}C^i_mi^n\]

期望线性性

对于任意两个随机事件x,y(x,y不要求相互独立)满足

\[E(x+y)=E(x)+E(y)\]
即两个(或多个)随机变量的和的期望等于期望的和

Min-Max容斥

给定集合\(S\),设\(max(S)\)\(S\)中的最大值,\(min(S)\)\(S\)中的最小值,则我们有一个式子:
\[max(S)=\sum_{T\subseteq S}(-1)^{|T|-1}min(T)\]
如果是k-thMax的话
\[kthmax(S)=\sum_{T\subseteq U}(-1)^{|T|-k}C^{k-1}_{|T|-1}min{(T)}\]

裴蜀定理(或贝祖定理

\(ax+by=c,x\in Z^*,y\in Z^*\)成立的充分条件是\({\gcd(a,b)|c}\)
exgcd中会用到

费马小定理

若p为质数,且a,b互质那么\(a^{p-1}\equiv1(mod p)\)
那么\(a^{p-1}(mod p)就是a在modm下的逆元了\)

欧拉定理

当a,p互质时,\(a^{\varphi(p)}\equiv1(mod p)\)
\(a^b=a^{b~mod~\phi(p)}\)
其中\(\varphi(p)\)是欧拉函数\((1\)~\(p)\)\(p\)互质的数
那么显然费马小定理就是欧拉定理的特殊情况
求逆元和上面同理

欧拉函数的一些性质

\(\Phi(1)=1\)
对于素数p,\(\Phi(p)=p-1\)
小于n并与n互质的数的和为:\(n*\Phi(n)/2\)
欧拉定理:如果a与n互质,\(a^{\Phi(n)}mod~p=1~mod~p\)
如果m与n互质,\(\Phi(mn)= \Phi(m)*\Phi(n)\)
如果p为素数,\(\Phi(p^k) = p^k - p^{k-1}= (p-1)*p^{k-1}\)(除p的倍数外,其他数都与p互质)

拓展欧拉定理

\(b<\varphi(m),a^b\equiv a^b(mod m)\)
\(b≥\varphi(m),a^b\equiv a^{bmod \varphi(m)+\varphi(m)}(mod m)\)

霍尔定理内容

霍尔定理是判断二分图是否满足完美匹配的充要条件,要求\(|X|=|Y|\),其中\(X\)是左边的点数,\(Y\)是右边的点数,
对于任意的\(|X|\)的子集\(a\)都有\(|a|\leq|b|\),其中\(b\)\(a\)能匹配的点集的并,即对应\(X\)中的子集\(W\),令\(N(W)\)\(W\)的能匹配的点集的并,有\(|W|\leq|N(W)|\)

推论

两边点集为\(X,Y\),则二分图的最大匹配为\(|X|-max{\{|W|-|N(W)|\}}\),其中\(W\)\(X\)的子集

转载于:https://www.cnblogs.com/graytido/p/11311315.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在信号与系统中,初值定理和终值定理是两个非常重要的定理,它们可以帮助我们理解信号在系统中的行为以及系统对信号的影响。下面我分别介绍一下初值定理和终值定理的概念和推导过程。 1. 初值定理 初值定理是指在一个系统中,如果输入信号在时刻 t=0 时存在,那么输出信号在 t=0 时的值等于系统的初始状态。这个定理可以用以下公式表示: lim(t→0) x(t) = x(0) 其中,x(t) 表示输入信号在时刻 t 的值,x(0) 表示系统在时刻 t=0 的初始状态。 下面我们来推导一下初值定理公式。 假设系统的输入输出关系可以用微分方程表示为: y(t) + a1*y'(t) + a2*y''(t) + ... + an*y^(n)(t) = b0*x(t) + b1*x'(t) + b2*x''(t) + ... + bm*x^(m)(t) 其中,y(t) 表示系统的输出,x(t) 表示系统的输入,a1~an 和 b0~bm 是常数,y'(t) 表示 y(t) 的一阶导数,y''(t) 表示 y(t) 的二阶导数,以此类推。 对上述微分方程两边同时取 t=0 时的极限,得到: lim(t→0) y(t) + a1*lim(t→0) y'(t) + a2*lim(t→0) y''(t) + ... + an*lim(t→0) y^(n)(t) = b0*lim(t→0) x(t) + b1*lim(t→0) x'(t) + b2*lim(t→0) x''(t) + ... + bm*lim(t→0) x^(m)(t) 由于初值定理是指在 t=0 时的情况,因此上式可以简化为: y(0) = b0*x(0) 也就是说,在 t=0 时,输出信号的值等于输入信号在 t=0 时的值乘以常数 b0,这个常数是系统的零状态响应。因此,初值定理公式就是: lim(t→0) x(t) = x(0) 2. 终值定理 终值定理是指在一个系统中,如果输入信号在时间趋于无穷大时趋于稳定,那么输出信号在时间趋于无穷大时的值等于输入信号在时间趋于无穷大时的稳态值与系统的稳态响应之和。这个定理可以用以下公式表示: lim(t→∞) y(t) = lim(t→∞) x(t)·H(s) 其中,x(t) 表示输入信号,y(t) 表示输出信号,H(s) 表示系统的传递函数。 下面我们来推导一下终值定理公式。 假设系统的输入输出关系可以用微分方程表示为: y(t) + a1*y'(t) + a2*y''(t) + ... + an*y^(n)(t) = b0*x(t) + b1*x'(t) + b2*x''(t) + ... + bm*x^(m)(t) 将上式两边同时取 Laplace 变换,得到: Y(s) + a1*s*Y(s) + a2*s^2*Y(s) + ... + an*s^n*Y(s) = b0*X(s) + b1*s*X(s) + b2*s^2*X(s) + ... + bm*s^m*X(s) 将上式整理后得到: Y(s) = X(s)·H(s) 其中,H(s) 表示系统的传递函数,是一个复变量函数,可以表示为: H(s) = b0 + b1*s + b2*s^2 + ... + bm*s^m / (s^n + a1*s^(n-1) + a2*s^(n-2) + ... + an) 将 H(s) 分解为部分分式的形式,可以得到: H(s) = C1/s + C2/s^2 + ... + Cn/s^n + F(s) 其中,C1、C2、...、Cn 是常数,F(s) 是一个关于 s 的有限阶多项式。 对于一个稳定系统,当 t 趋于无穷大时,输入信号的稳态值等于输入信号在时间趋于无穷大时的极限值。因此,可以得到: lim(t→∞) x(t) = lim(s→0) sX(s) 同理,输出信号在时间趋于无穷大时的值等于输入信号在时间趋于无穷大时的稳态值与系统的稳态响应之和,即: lim(t→∞) y(t) = lim(s→0) sY(s) = lim(s→0) sX(s)·H(s) 这就是终值定理公式
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值