分析:大数据失败案例及背后原因!

大数据,时下最火热的词之一,覆盖了经济、互联网、物流等各行各业,无论是大公司知名公司还是中小企业都纷纷投入,希望能占得先机,但不是每一个项目都会成功。因此,我们大圣众包(www.dashengzb.cn)盘点了几个大数据失败案例,深究其原因,让我们从中吸取教训

  大数据项目失败案例

  对数据过于相信:2008年,Google第一次开始预测流感就取得了很好的效果,比美国疾病预防控制中心提前两礼拜预测到了流感的爆发。但是,几年之后,Google的预测比实际情况(由防控中心根据全美就诊数据推算得出)高出了50%。媒体过于渲染了Google的成功,出于好奇目的而搜索相关关键词的人越来越多,从而导致了数据的扭曲。

  低估大数据复杂程度:在美国有几个互联网金融公司专做中小企业贷款。但是中小企业贷款涉及的数据更复杂,而且中小企业涉及到整个行业非常特殊的一些数据,比如非标准的财务报表和不同行业、不同范式的合同,他们没有很专业的知识,是很难理解或者很难有时间把它准确挖掘出来。

  当时大数据团队想用一个很完美的模型把所有的问题都解决掉,比如把市场和信贷的解决方案全部用一个模型来解决,但因为数据的复杂程度,最后证明这种方法是失败的,而且90%的时间都在做数据清理。这就说明,想通过大数据技术一下子解决所有的问题是很难成功的,而是要用抽丝剥茧、循序渐进的方式。

  应用场景选择错误:一家保险公司想了解日常习惯和购买生命保险意愿之间的关联性。由于随后觉得习惯太过于宽泛,该公司将调查范畴限定到是否吸烟上。但是,工作仍然没有实质进展。不到半年,他们就终止了整个项目,因为一直未能发现任何有价值的信息。

  这个项目的失败是由于问题的复杂性。在抽烟与否之间,该公司没有注意到还有大片灰色地带:很多人是先抽烟而后又戒烟了。在将问题简单化动机的驱动下,这个部分被忽略了。

  问题梳理不够全面。一家全球性公司的大数据团队发现了很多深刻的洞察,并且计划通过云让全公司共享。结果这个团队低估了效率方面的损耗,由于网络拥塞的问题,无法满足全球各个分支顺畅提交数据运行分析的需求。

  该公司应该仔细思考下如何支撑大数据项目,梳理所需的技能并协调各IT分支的力量进行支持。由于网络、安全或基础设施的问题,已经有太多的大数据项目栽了跟头。

  提出了错误的问题:一家全球领先的汽车制造商决定开展一个情感分析项目,为期6个月,耗资1千万美元。项目结束之后,该厂商将结果分享给经销商并试图改变销售模式。然后,所得出的结果最终被证明是错误的。项目团队没有花足够的时间去了解经销商所面临的问题或业务建议,从而导致相关的分析毫无价值。

  应用了错误的模型:某银行为判断电信行业的客户流失情况,从电信业聘请了一位专家,后者也很快构建了评估用户是否即将流失的模型。当时已进入评测验证的最后阶段,模型很快就将上线,而银行也开始准备给那些被认为即将流失的客户发出信件加以挽留。

  但是,为了保险起见,一位内部专家被要求对模型进行评估。这位银行业专家很快发现了令人惊奇的事情:不错,那些客户的确即将流失,但并不是因为对银行的服务不满意。他们之所以转移财产(有时是悄无声息的),是因为感情问题——正在为离婚做准备。

  可见,了解模型的适用性、数据抽象的级别以及模型中隐含的细微差别,这些都是非常具有挑战性的。

  大数据案例失败的原因

  纵观上述失败案例,可归结为以下八种导致大数据项目失败的常见原因。

  管理层阻力。尽管数据当中包含大量重要信息,但FortuneKnowledge公司发现有62%的企业领导者仍然倾向于相信自己的直觉,更有61%的受访者认为领导者的实际洞察力在决策过程中拥有高于数据分析结论的优先参考价值。

  选择错误的使用方法。企业往往会犯下两种错误,要么构建起一套过分激进、自己根本无法驾驭的大数据项目,要么尝试利用传统数据技术处理大数据问题。无论是哪种情况,都很有可能导致项目陷入困境。

  提出错误的问题。数据科学非常复杂,其中包含专业知识门类(需要深入了解银行、零售或者其它行业的实际业务状况);数学与统计学经验以及编程技能等等。很多企业所雇用的数据科学家只了解数学与编程方面的知识,却欠缺最重要的技能组成部分——对相关行业的了解,因此最好能从企业内部出发寻找数据科学家。

  缺乏必要的技能组合。这项理由与“提出错误的问题”紧密相关。很多大数据项目之所以陷入困境甚至最终失败,正是因为不具备必要的相关技能。通常负责此类项目的都是IT技术人员——而他们往往无法向数据提出足以指导决策的正确问题。

  与企业战略存在冲突。要让大数据项目获得成功,大家必须摆脱将其作为单一“项目”的思路、真正把它当成企业使用数据的核心方式。问题在于,其它部门的价值或者战略目标有可能在优先级方面高于大数据,这种冲突往往会令我们有力无处使。

  大数据孤岛。大数据供应商总爱谈论“数据湖”或者“数据中枢”,但事实上很多企业建立起来的只能算是“数据水坑儿”,各个水坑儿之间存在着明显的边界——例如市场营销数据水坑儿与制造数据水坑儿等等。需要强调的是,只有尽量缓和不同部门之间的隔阂并将各方的数据流汇总起来,大数据才能真正发挥自身价值。

  在大数据技术之外遇到了其它意外状况。数据分析仅仅是大数据项目当中的组成部分之一,访问并处理数据的能力同样重要。除此之外,常常被忽略的因素还有网络传输能力限制与人员培训等等。

  回避问题。有时候我们可以肯定或者怀疑数据会迫使自身做出一些原本希望尽量避免的运营举措,例如制药行业之所以如此排斥情感分析机制、是因为他们不希望将不良副作用报告给美国食品药品管理局并承担随之而来的法律责任。

  在这份理由清单中,大家可能已经发现了一个共同的主题:无论我们如何高度关注数据本身,都会有人为因素介入进来。即使我们努力希望获取对数据的全面控制权,大数据处理流程最终还是由人来打理的,其中包括众多初始决策——例如选择哪些数据进行收集与分析、向分析结论提出哪些问题等等。

  为防止大数据项目遭遇失败,引入迭代机制是非常必要的。使用灵活而开放的数据基础设施,保证其允许企业员工不断调整实际方案、直到他们的努力获得理想的回馈,最终以迭代为武器顺利迈向大数据有效使用的胜利彼岸。



Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】 大数据时代几个例子告诉你什么是大数据全文共5页,当前为第1页。大数据时代几个例子告诉你什么是大数据 大数据时代几个例子告诉你什么是大数据全文共5页,当前为第1页。 大数据时代,几个例子告诉你什么是大数据 大数据时代几个例子告诉你什么是大数据全文共5页,当前为第2页。工具类厂商蓄意炒作大数据,以达到售卖产品的目的,但导致的结果是很多人对大数据这一概念云里雾里。实际上,大数据就发生在你我身边,虽然你看不到它,但它却时时影响着我们的生活。  现阶段,和大数据相关的企业有三种。一种是工具类公司,他们宣传得最卖力,并且把大数据吹出了泡沫,原因是它们希望把自己的产品卖给企业;一种是依托于大数据从事咨询服务类的企业;还有一种就是实实在拥有大数据的公司,它们和我们休戚相关,也就是下面的小故事所要阐述的内容。  第一个故事,百货公司知道女孩怀孕  美国的Target百货公司上线了一套客户分析工具,可以对顾客的购买记录进行分析,并向顾客进行产品推荐。一次,他们根据一个女孩在Target连锁店中的购物记录,推断出这一女孩怀孕,然后开始通过购物手册的形式向女孩推荐一系列孕妇产品。这一作法让女孩的家长勃然大怒,事实真相是女孩隐瞒了怀孕消息。  点评:看似杂乱无章的购买清单,经过对比发现其中的规律和不符合常规的数据,往往能够得出一些真实的结论。这就是大数据应用。  第二个故事,搜狗热词里的商机  王建锋是某综合类网站的编辑,基于访问量的考核是这个编辑每天都要面对的事情。但在每年的评比中,他都号称是PV王。原来他的秘密就是只做热点新闻。王建锋养成了看百度搜索风云榜和搜狗热搜榜的习惯,所以,他会优先挑选热情榜上的新闻事件来编辑整理,关注的人自然多。  点评:搜狗拥有输入法,搜索引擎,那些在输入法和搜索引擎上反复出现的热词,就是搜狗热搜榜的来源。通过对海量词汇的对比,找出哪些是网民关注的。这就是大数据应用。  第三个故事,阿里云知道谁需要贷款  这是阿里人讲述的一个故事。每天,海量的交易和数据在阿里的平台上跑着,阿里通过对商户最近100天的数据分析,就能知道哪些商户可能存在资金问题,此时的阿里贷款平台就有可能出马,同潜在的贷款对象进行沟通。  点评:通常来说,数据比文字更真实,更能反映一个公司的正常运营情况。通过海量的分析得出企业的经营情况,这就是大数据应用。  第四个故事,中移动挽留流失客户  iPhone进入中国后,铁杆的移动用户王永铭加入了联通合约机大军。由于合约机承担了大量通话内容,王永铭将全球通换成了动感地带。三个月之后,王永铭接到了中国移动的10086电话,向他介绍中移动的优惠资费活动。一位移动的工作人员称,运营商会保管用户数据,如果话费锐减,基本上就是流失先兆。  点评:给数亿用户建立一个数据库,通过跟踪用户的话费消耗情况,运营商就能知道哪些用户在流失。这就是大数据应用。  第五个故事:工薪阶层如何省小钱  上汽通用五菱股份有限公司的肖伟,是个不折不扣的网购专家。区大数据时代几个例子告诉你什么是大数据全文共5页,当前为第3页。别于菜市场的费力砍价,肖伟的作法简单多了,登陆各种比价网站,然后选择最便宜的正规店下单。  点评:比价网站通过海量的产品信息抓取,比如抓京东、天猫、易购的数据,然后将价格由低到高进行排列,这也是大数据应用。  第六个故事:公关公司的舆情监督  这是一个离职公关人的故事。她参与和间接参与了很多危机公关事件,比如雷士照明的创始人股东之争,比如罗永浩砸西门子冰箱事件。她说,她每天的事情都是上网搜索事件的热度,然后决定下一步的动作。  点评:实际上你的每一下搜索,都是基于海量数据进行的,这实际上也是大数据的一种应用。  第七个故事:商用社交开始决定百事可乐的营销计划  这年头,广告主越来越精,他们希望花的每一分钱都有所回报。面对五花八门的营销活动,到底哪一种才是最合适的呢百事可乐的作法很简单,它们购买了社交信息优化推广公司SocialFlow的服务,对数据进行分析,从而知道何种营销活动的传播效果更好。  点评:广告主越来越喜欢为类似Social Flow的服务付费,基于海量数据分析然后得出结论的企业营销行为,也是大数据应用。  第8个故事:每天,我们借助大数据完成微信上的互动  田宇是一个85后小姑娘,每天她用微信来记录心情,并且和网友分享图片,此外还有各种语音聊天。全国有数亿像田宇一样的人在使用微信,每天都有大数据在微信这个平台上跑着。大数据时代几个例子告诉你什么是大数据全文共5页,当前为第4页。 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值