莫比乌斯反演 + 杜教筛
$$\sum_{i = 1}^{n}\sum_{j = 1}^{n}ijgcd(i, j)$$
$$= \sum_{d = 1}^{n}d\sum_{i = 1}^{n}\sum_{j = 1}^{n}ij[gcd(i, j) == d]$$
$$= \sum_{d = 1}^{n}d^3\sum_{i = 1}^{\left \lfloor \frac{n}{d} \right \rfloor}\sum_{j = 1}^{\left \lfloor \frac{n}{d} \right \rfloor}ij[gcd(i, j) == 1]$$
$$= \sum_{d = 1}^{n}d^3\sum_{i = 1}^{\left \lfloor \frac{n}{d} \right \rfloor}\sum_{j = 1}^{\left \lfloor \frac{n}{d} \right \rfloor}ij\sum_{t | i, t | j}\mu(t)$$
$$= \sum_{d = 1}^{n}d^3\sum_{t = 1}^{\left \lfloor \frac{n}{d} \right \rfloor}\mu(t)\sum_{i = 1}^{\left \lfloor \frac{n}{d} \right \rfloor}i[t | i]\sum_{j = 1}^{\left \lfloor \frac{n}{d} \right \rfloor}j[t | j]$$
$$= \sum_{d = 1}^{n}d^3\sum_{t = 1}^{\left \lfloor \frac{n}{d} \right \rfloor}\mu(t)(t\sum_{i = 1}^{\left \lfloor \frac{n}{td} \right \rfloor}i)^2$$
$$= \sum_{d = 1}^{n}d^3\sum_{t = 1}^{\left \lfloor \frac{n}{d} \right \rfloor}t^2\mu(t)(\frac{\left \lfloor \frac{n}{td} \right \rfloor(\left \lfloor \frac{n}{td} \right \rfloor + 1)}{2})^2$$
记$T = td$,
$$\sum_{T = 1}^{n}(\frac{\left \lfloor \frac{n}{T} \right \rfloor(\left \lfloor \frac{n}{T} \right \rfloor + 1)}{2})^2\sum_{d | T}d^3\mu(\frac{T}{d})\frac{T^2}{d^2}$$
$$= \sum_{T = 1}^{n}(\frac{\left \lfloor \frac{n}{T} \right \rfloor(\left \lfloor \frac{n}{T} \right \rfloor + 1)}{2})^2T^2\sum_{d | T}d\mu(\frac{T}{d})$$
注意到$\sum_{d | n}\frac{n}{d}\mu(d) = \varphi(n)$,
$$= \sum_{T = 1}^{n}(\frac{\left \lfloor \frac{n}{T} \right \rfloor(\left \lfloor \frac{n}{T} \right \rfloor + 1)}{2})^2(T^2\varphi(T))$$
记$h(i) = i^2\varphi(i)$,
$$= \sum_{T = 1}^{n}(\frac{\left \lfloor \frac{n}{T} \right \rfloor(\left \lfloor \frac{n}{T} \right \rfloor + 1)}{2})^2h(T)$$
前面那部分已经可以分块计算了,现在的主要矛盾就是$h(T)$怎么算。
考虑杜教筛的套路,我们让$h$函数卷上$g(n) = n^2$,得到
$$(h * g)(n) = \sum_{d | n}d^2\varphi(d)(\frac{n}{d})^2 = n^2\sum_{d | n}\varphi(d) = n^3$$
而
$$S(n) = \sum_{i = 1}^{n}i^3 - \sum_{i = 2}^{n}i^2S(\left \lfloor \frac{n}{i} \right \rfloor)$$
根据小学奥数的知识
$$\sum_{i = 1}^{n}i^3 = (\sum_{i = 1}^{n}i)^2 = \frac{n^2(n + 1)^2}{4}$$
$$\sum_{i = 1}^{n}i^2 = \frac{n(n + 1)(2n + 1)}{6}$$
然后就可以愉快地杜教筛了。
并不会算时间复杂度,反正能过。
另外注意这题的$n$有可能大于等于模数$P$,所以我疯狂取模之后效率很低。
Code:
// luogu-judger-enable-o2 #include <cstdio> #include <cstring> #include <unordered_map> using namespace std; typedef long long ll; const int N = 4e6 + 5; const int Maxn = 4e6; int pCnt = 0, pri[N], phi[N]; ll P, inv2, inv4, inv6, sum[N], h[N]; bool np[N]; unordered_map <ll, ll> sH; template <typename T> inline void inc(T &x, T y) { x += y; if (x >= P) x -= P; } template <typename T> inline void sub(T &x, T y) { x -= y; if (x < 0) x += P; } inline ll fpow(ll x, ll y) { ll res = 1LL; for (; y > 0; y >>= 1) { if (y & 1) res = res * x % P; x = x * x % P; } return res; } inline void sieve() { phi[1] = 1; for (int i = 2; i <= Maxn; i++) { if (!np[i]) pri[++pCnt] = i, phi[i] = i - 1; for (int j = 1; j <= pCnt && i * pri[j] <= Maxn; j++) { np[i * pri[j]] = 1; if (i % pri[j] == 0) { phi[i * pri[j]] = phi[i] * pri[j]; break; } phi[i * pri[j]] = phi[i] * phi[pri[j]]; } } for (int i = 1; i <= Maxn; i++) { h[i] = 1LL * i * i % P * phi[i] % P; inc(sum[i], sum[i - 1]), inc(sum[i], h[i]); } } /*inline ll getPhi(ll n) { if (n <= 0) return 0; if (n <= Maxn) return sum[n]; if (sPhi[n]) return sPhi[n]; ll res = n * (n + 1) % P * inv2 % P; for (ll l = 2, r; l <= n; l = r + 1) { r = (n / (n / l)); sub(res, (r - l + 1) * getPhi(n / l) % P); } return sPhi[n] = res; } */ inline ll squSum(ll n) { if (n <= 0) return 0; return n % P * ((n + 1) % P) % P * ((2LL * n % P + 1) % P) % P * inv6 % P; } inline ll squ(ll n) { n %= P; return n * n % P; } ll getH(ll n) { if (n <= 0) return 0LL; if (n <= Maxn) return sum[n]; if (sH[n]) return sH[n]; ll res = squ(n + 1) * squ(n) % P * inv4 % P; for (ll l = 2, r; l <= n; l = r + 1) { r = (n / (n / l)); sub(res, (squSum(r) - squSum(l - 1) + P) % P * getH(n / l) % P); // res = (res - (squSum(r) - squSum(l - 1) + P) % P * getH(n / l) % P + P) % P; } return sH[n] = res; } int main() { // freopen("testdata.in", "r", stdin); ll n; scanf("%lld%lld", &P, &n); inv2 = fpow(2, P - 2), inv4 = fpow(4, P - 2), inv6 = fpow(6, P - 2); sieve(); ll ans = 0; for (ll l = 1, r; l <= n; l = r + 1) { r = (n / (n / l)); inc(ans, squ(n / l) * squ(n / l + 1) % P * ((getH(r) - getH(l - 1) + P) % P) % P * inv4 % P); } printf("%lld\n", ans); return 0; }