天才樱木

专注嵌入式和人工智能

复数的物理意义是什么?

复数最直观的理解就是旋转! 4*i*i = -4 就是“4”在数轴上旋转了180度。 那么4*i就是旋转了90度。 另外,e^t是什么样呢? 但当你在指数上加上i之后呢?但当你在指数上加上i之后呢? 变成了一个螺旋线。是不是和电磁场很像?(想拿欧拉公式去跟女生炫学术的男生注意了:她...

2017-05-25 21:31:55

阅读数 620

评论数 0

三角网格(Triangle Mesh)

三角网格(Triangle Mesh) 最简单的情形,多边形网格不过是一个多边形列表;三角网格就是全部由三角形组成的多边形网格。多边形和三角网格在图形学和建模中广泛使用,用来模拟复杂物体的表面,如建筑、车辆、人体,当然还有茶壶等。图14.1给出一些例子: 当然,...

2017-05-24 19:49:09

阅读数 14857

评论数 1

Eye in hand And eye on hand calibration

常见工业机器标定方式和方法:  一 手眼标定的两种情形 首先讲一下在工业应用中,手和眼(摄像机)的两种位置关系,第一种是将摄像机(眼)固定在机械手(手)上面,眼随手移动;第二种是摄像机(眼)和机械手(手)分离,眼的位置相对于手是固定的,下面用网上的两张图来说明下: 第一种情况:相机移动 ...

2017-05-18 21:03:16

阅读数 5071

评论数 3

MSER算法

最稳定极值区域介绍 如把灰度图看成高低起伏的地形图,其中灰度值看成海平面高度的话,MSER的作用就是在灰度图中找到符合条件的坑洼。条件为坑的最小高度,坑的大小,坑的倾斜程度,坑中如果已有小坑时大坑与小坑的变化率。 上图展示了几种不同的坑洼,根据最小高度,大小,倾斜程度这些条件的不同,选择的...

2017-05-16 20:06:51

阅读数 1593

评论数 0

FREAK算法

FREAK算法是ICCV 2012上的一篇关于特征点检测与匹配的论文《FREAK: Fast Retina Keypoint》上提出的,从文章标题中可以看出来该算法的一个特点是快速,另外一个特点就是该算法是被人眼识别物体的原理上得到启发提出的。 看过我之前博文的可能知道,我到现在已经把S...

2017-05-16 20:04:29

阅读数 623

评论数 0

BRIEF特征点描述算法

BRIEF特征点描述算法 时间:2015-07-16 17:02:46      阅读:2417      评论:0      收藏:0      [点我收藏+] 标签:brief   特征描述   角点检测   算法    简介          BRIEF是2010年的一...

2017-05-16 20:01:31

阅读数 222

评论数 0

ORB特征提取

绪论 假如我有2张美女图片,我想确认这2张图片中美女是否是同一个人。这太简单了,以我专研岛国动作片锤炼出来的火眼金睛只需轻轻扫过2张图片就可以得出结论。但是,如果我想让计算机来完成这个功能就困难重重了:再性感的美女在计算机眼中也只是0-1组成的数据而已。一种可行的方法是找出2张图片中的特征点...

2017-05-16 19:59:35

阅读数 385

评论数 0

SIFT,SURF,ORB,FAST 特征提取算法比较

SIFT,SURF,ORB,FAST 特征提取算法比较 图像处理的基础就是要进行特征点的提取,feature(interest points) detect 的方法也在不断的进步,边检测,角点检测,直线检测,圆检测,SIFT特征点检测,同时描述符也在发展,为了匹配的高效,逐渐从高维特征向量到...

2017-05-16 19:53:52

阅读数 1639

评论数 0

BRISK特征提取

简介         BRISK算法是2011年ICCV上《BRISK:Binary Robust Invariant Scalable Keypoints》文章中,提出来的一种特征提取算法,也是一种二进制的特征描述算子。        它具有较好的旋转不变性、尺度不变性,较好的鲁棒性等。...

2017-05-16 19:52:49

阅读数 373

评论数 0

SURF特征提取分析

背景引言 计算机视觉中,引入尺度不变的特征,主要的思想是每个检测到的特征点都伴随着对应的尺寸因子。当我们想匹配不同图像时,经常会遇到图像尺度不同的问题,不同图像中特征点的距离变得不同,物体变成不同的尺寸,如果我们通过修正特征点的大小,就会造成强度不匹配。为了解决这个问题,提出一个尺度不变的SUR...

2017-05-16 19:47:20

阅读数 120

评论数 0

SIFT特征提取分析

SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配,获得了良...

2017-05-16 19:44:48

阅读数 141

评论数 0

Harris角点检测原理详解

1. 不同类型的角点 在现实世界中,角点对应于物体的拐角,道路的十字路口、丁字路口等。从图像分析的角度来定义角点可以有以下两种定义: 角点可以是两个边缘的角点;角点是邻域内具有两个主方向的特征点; 前者往往需要对图像边缘进行编码,这在很大程度上依赖于图像的分割与边缘提取,具有相当大的难度...

2017-05-16 19:05:16

阅读数 179

评论数 0

Fast特征检测

Fast特征检测 一、Fast算法 1、基本原理 Fast特征点检测feature2D原理是在圆周上按顺时针方向从1到16的顺序对圆周像素点进行编号。如果在圆周上有N个连续的像素的亮度都比圆心像素的亮度Ip加上阈值t还要亮,或者比圆心像素的亮度减去阈值还要暗,则圆心像素被称为角点。 算法核...

2017-05-16 19:02:21

阅读数 148

评论数 0

LBP特征

LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen, 和 D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的...

2017-05-16 19:00:42

阅读数 128

评论数 0

Haar-like特征

1、Haar-like特征        Haar-like特征最早是由Papageorgiou等应用于人脸表示,Viola和Jones在此基础上,使用3种类型4种形式的特征。 Haar特征分为三类:边缘特征、线性特征、中心特征和对角线特征,组合成特征模板。特征模板内有白色和黑色两种矩形,并定...

2017-05-16 18:59:26

阅读数 289

评论数 0

RANSAC算法详解

给定两个点p1与p2的坐标,确定这两点所构成的直线,要求对于输入的任意点p3,都可以判断它是否在该直线上。初中解析几何知识告诉我们,判断一个点在直线上,只需其与直线上任意两点点斜率都相同即可。实际操作当中,往往会先根据已知的两点算出直线的表达式(点斜式、截距式等等),然后通过向量计算即可方便地判断...

2017-05-16 18:54:40

阅读数 330

评论数 0

图像拼接基本步骤

前言     图像拼接也是计算机视觉领域的一个研究热点,本人这段时间内也对该算法进行了一番研究,在这里把其思想步骤简单归纳总结一下,以免忘记。 一、算法目的     随便拍摄两张图片(图1和图2),两图之间有相同的拍摄区域,需要将两幅图无缝拼接在一起,完全接壤。(不就是全景拼接嘛!!...

2017-05-16 18:48:53

阅读数 9129

评论数 11

slam打脸入门知识

还是说视觉slam吧。 先说视觉这块,首先射影几何的一些内容相机模型,单视几何,双视几何和多视几何。这些内容可以在Multiple View Geometry in Computer Vision这本书中找到。英文版的,另外中科院的吴福朝编著的“计算机视觉中的数学方法”也很好,涵盖了上述了MVG...

2017-05-14 14:47:22

阅读数 2969

评论数 0

ICP原理理解

临时研究了下机器视觉两个基本算法的算法原理 ,可能有理解错误的地方,希望发现了告诉我一下 主要是了解思想,就不写具体的计算公式之类的了 (一) ICP算法(Iterative Closest Point迭代最近点) ICP(Iterative Closest Point迭代最近点)算法是一种...

2017-05-12 09:33:42

阅读数 1958

评论数 0

梯度下降法

这几天在看《统计学习方法》这本书,发现 梯度下降法 在 感知机 等机器学习算法中有很重要的应用,所以就特别查了些资料。         一.介绍       梯度下降法(gradient descent)是求解无约束最优化问题的一种常用方法,有实现简单的优点。梯度下降法是迭代算法,每一步需要求解目...

2017-05-11 21:29:44

阅读数 182

评论数 0

提示
确定要删除当前文章?
取消 删除