BZOJ 4034 [HAOI2015]T2 树链剖分

Description

有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个

操作,分为三种:
操作 1 :把某个节点 x 的点权增加 a 。
操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。
操作 3 :询问某个节点 x 到根的路径中所有点的点权和。

Input

第一行包含两个整数 N, M 。表示点数和操作数。

接下来一行 N 个整数,表示树中节点的初始权值。 接下来 N-1 行每行三个正整数 fr, to , 表示该树中存在一条边 (fr, to) 。
再接下来 M 行,每行分别表示一次操作。其中第一个数表示该操 作的种类( 1-3 ) ,之后接这个操作的参数( x 或者 x a ) 。

Output

对于每个询问操作,输出该询问的答案。答案之间用换行隔开。

Sample Input

5 5

1 2 3 4 5

1 2

1 4

2 3

2 5

3 3

1 2 1

3 5

2 1 2

3 3

Sample Output

6

9

13

HINT

对于 100% 的数据, N,M<=100000 ,且所有输入数据的绝对值都不 会超过 10^6。

Source

一道树链剖分的题目。剖完之后放到线段树里维护就可以啦!
对于操作一,既是线段数单点修改;对于操作二,在dfs_2中记录一下dfs序即可,因为一棵子树中所有的节点在序列中的位置是连续的。直接区间修改。对于操作三,普通的查询……
不过要吐槽一下……因为int 和 long long 之间的蜜汁错误,我和某神犇调了好久……@a【哭晕】
一定要注意……int 和 long long 相乘会返回int值……mdzz

#include <iostream>
#include <cstdio>
#include <cstdlib>
using namespace std;
typedef long long LL;
const int SZ = 300010;
const int root = 1;

struct Edge
{
    int f, t;
}es[SZ];
struct SGT
{
    int l, r;
    LL sum, add;
}tree[SZ << 2];
int num[SZ], first[SZ << 1], nxt[SZ << 1], tot = 1;

void insert(int f, int t)
{
    es[++tot] = (Edge){f, t};
    nxt[tot] = first[f];
    first[f] = tot;
}

int fa[SZ], depth[SZ], size[SZ], son[SZ];

void dfs_1(int u, int f)
{
    fa[u] = f;
    depth[u] = depth[f] + 1;
    size[u] = 1;
    for(int i = first[u]; i; i = nxt[i])
    {
        int v = es[i].t;
        if(v == f) continue;
        dfs_1(v, u);
        size[u] += size[v];
        if(!son[u] || size[v] > size[son[u]]) son[u] = v;
    }
} 

int top[SZ], topa, inseg[SZ], intree[SZ], in[SZ], out[SZ];

void dfs_2(int u, int topu)
{
    top[u] = topu;
    inseg[u] = ++topa; 
    in[u] = topa;
    out[u] = topa;
    intree[topa] = u;
    if(!son[u]) return ;
    dfs_2(son[u], topu);
    for(int i = first[u]; i; i = nxt[i])
    {
        int v = es[i].t;
        if(v == fa[u] || v == son[u]) continue;
        dfs_2(v, v);
    }
    out[u] = topa;
}

void update(int now)
{
    tree[now].sum = tree[now << 1].sum + tree[now << 1 | 1].sum; 
}

void build(int now, int l, int r)
{
    tree[now].l = l;
    tree[now].r = r;
    if(l == r)
    {
        tree[now].sum = num[intree[l]];
        return ;
    }
    int mid = (l + r) >> 1;
    build(now << 1, l, mid);
    build(now << 1 | 1, mid + 1, r);
    update(now);
}

void pushdown(int now)
{
    if(tree[now].add)
    {
        tree[now << 1].sum += (tree[now << 1].r - tree[now << 1].l + 1) * tree[now].add;
        tree[now << 1].add += tree[now].add;
        tree[now << 1 | 1].sum += (tree[now << 1 | 1].r - tree[now << 1 | 1].l + 1) * tree[now].add;
        tree[now << 1 | 1].add += tree[now].add;
        tree[now].add = 0;
        update(now);
    }
}

void change(int now, int l, int r, LL value)
{
    if(l <= tree[now].l && tree[now].r <= r)
    {
        tree[now].sum += (tree[now].r - tree[now].l + 1) * value;
        tree[now].add += value;
        return;
    }
    pushdown(now);
    int mid = (tree[now].l + tree[now].r) >> 1;
    if(l <= mid) change(now << 1, l, r, value);
    if(r > mid) change(now << 1 | 1, l, r, value);
    update(now);
}

LL ask_sum(int now, int l, int r)
{
    if(l <= tree[now].l && tree[now].r <= r)
        return tree[now].sum;
    pushdown(now);
    LL ans = 0;
    int mid = (tree[now].l + tree[now].r) >> 1;
    if(l <= mid) ans += ask_sum(now << 1, l, r);
    if(r > mid) ans += ask_sum(now << 1 | 1, l, r);
    return ans;
}

LL Sum(int x)
{
    int fal = top[x], far = top[root];
    LL ans = 0;
    while(fal != far)
    {
        LL ha = ask_sum(1, inseg[fal], inseg[x]);
        ans += ha;
        x = fa[fal]; fal = top[x];
    }
    ans += ask_sum(1, inseg[root], inseg[x]);
    return ans;
}

int read()
{
    char c = getchar();
    bool flag = 0;
    int s = 0;
    while(c < '0' || c > '9')
    {
        if(c == '-') flag = 1;
        c = getchar();
    }
    while('0' <= c && c <= '9')
    {
        s = s * 10 + (c - '0');
        c = getchar();
    }
    return flag == 1 ? (-s) : s;
}

int main()
{
    int n, m;
    n = read(); m = read();
    for(int i = 1; i <= n; i++)
        num[i] = read();
    int f, t;
    for(int i = 1;i < n; i++)
    {
        f = read();
        t = read();
        insert(f, t);
        insert(t, f);
    }
    dfs_1(1, 0);
    dfs_2(1, 1);
    build(1, 1, n);
    int op, x, a;
    for(int i = 1; i <= m; i++)
    {
        op = read();
        x = read();
        if(op == 1)
        {
            a = read();
            change(1, inseg[x], inseg[x], (LL)a);
        }
        if(op == 2)
        {
            a = read();
            change(1, in[x], out[x], (LL)a);
        }
        if(op == 3) printf("%lld\n", Sum(x));
    }
    return 0;
}

转载于:https://www.cnblogs.com/Loi-Vampire/p/6017043.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值