第十三次CCF认证经历

博主分享了自己首次参加CCF编程认证考试的经历,强调考试更侧重编程和复现能力,而非纯算法。尽管准备时间有限,博主详细描述了考试的五道题目,包括微信跳一跳状态问题、球碰撞模拟、URL匹配、博弈题和路径求和问题。由于代码量大和测试数据集规模,优化问题显得尤为重要。博主在最后一题因时间紧迫导致错误,最终成绩未达预期,但表示将继续努力并准备未来的认证考试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

这是我第一次参加ccf编程的认证考试,说实话,这些题的类型其实跟ACM之类的题还不是太一样,具体体现在题目的不怎么偏算法,感觉更倾向于考察考生的编程能力和复现能力,不得不说代码量是真的大,基本都上百行,写着写着自己都不相信自己了。我是13号才报的名把,也就准备了3天,感觉还是准备的不够充分,尤其大文本处理的题,只有多做,心里才有更好的实现技巧。还有就是要注意各种优化问题,测试数据集基本都很大,我用的是Java,还好时间上要求不是很高。非常扯的就是,你提交上的题,它不运行,导致你心里很虚啊,毕竟一个小小的问题就会导致0分,没错,代码不运行。这就要求我们自己有很高的编程能力和多边界条件的把握能力。

考察过程

第一题上来就是状态之类的题,是关于微信跳一跳的,状态有3个吧,只要读题认真,多用几个变量记录上一次的得分,上次的状态,基本没问题。也因为这是第一题,我做的也不快,很仔细的读题,生怕错了,自己编了几个测试用例,确定无误,愉快的交了。大概环顾了一下四周,大家好像都对第一题很认真。
第二题球碰撞问题,思路马上好就来了,就是用一个类抽象出球的编号,前进方向,球的当前位置。每过一秒,判断是否有位置相同的小球,有的话,交换前进方向的信息,同时还要考虑球是否处于左端点或者右端点,这时也要变换方向。
第三题url匹配问题,说实话题目我没有弄得很清楚,分不清path到底与str的区别是什么,末尾的/我也不太确定要怎么做

### 关于第34次CCF CSP认证第三题的解答 目前提供的引用资料中并未直接提及第34次CCF CSP认证的具体第三题内容及其详细解答。然而,可以通过分析已有的参考资料以及常见的CSP认证题目特点来进行推测。 #### 已知信息总结 - **引用[1]** 提供了关于第3次CCF CSP认证的相关真题解析[^1]。 - **引用[2]** 讨论了第十三次CCF CSP认证中的某道题目(棋局评估),并提到了一些实现细节和错误原因[^2]。 - **引用[3]** 给出了第34次CCF CSP认证的第一题“矩阵重塑”的满分解决方案,并指出该题较为基础[^3]。 尽管上述引用未涉及具体第三题的内容,但通常情况下,CCF CSP认证的第三题会更注重算法设计能力、数据结构应用能力和复杂度优化技巧。以下是基于常见模式的一个可能方向: --- ### 可能的方向与解决方法 假设第34次CCF CSP认证的第三题是一个典型的动态规划或图论问题,则可以从以下几个方面入手解决问题: #### 动态规划类问题 如果题目属于动态规划范畴,一般需要定义状态转移方程。例如: ```python def solve_dp(n, m, data): dp = [[float('inf')] * (m + 1) for _ in range(n + 1)] dp[0][0] = 0 for i in range(1, n + 1): for j in range(m + 1): if j >= data[i - 1]: dp[i][j] = min(dp[i - 1][j], dp[i - 1][j - data[i - 1]] + 1) else: dp[i][j] = dp[i - 1][j] return dp[n][m] n, m = map(int, input().split()) data = list(map(int, input().split())) print(solve_dp(n, m, data)) ``` 此代码片段展示了一个简单的背包问题求解过程,适用于部分动态规划场景。 #### 图论类问题 如果是图论相关问题,可能会涉及到最短路径计算或者连通性判断等问题。以下是一段Dijkstra算法的模板代码: ```python import heapq def dijkstra(graph, start): dist = {node: float('inf') for node in graph} dist[start] = 0 heap = [(0, start)] while heap: current_dist, u = heapq.heappop(heap) if current_dist > dist[u]: continue for v, weight in graph[u].items(): distance = current_dist + weight if distance < dist[v]: dist[v] = distance heapq.heappush(heap, (distance, v)) return dist graph = { 'A': {'B': 1, 'C': 4}, 'B': {'A': 1, 'C': 2, 'D': 5}, 'C': {'A': 4, 'B': 2, 'D': 1}, 'D': {'B': 5, 'C': 1} } start_node = 'A' result = dijkstra(graph, start_node) print(result) ``` 这段代码实现了单源最短路径算法——Dijkstra算法,适合处理加权无向图上的距离计算问题。 --- 由于当前缺乏具体的题目描述,以上仅为通用框架示例。实际解答需依据官方发布的正式试题为准。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值