CSDN个人相册功能

个人相册功能

首先说明一点,csdn改版以后已经取消了个人相册找个功能。网上很多说还有个人相册的入口,都是很多年前的版本了。

所有csdn用户上传的图片,其地址已经跟用户账号没有关联。从技术架构上来讲,使用了大图床云存储的概念。

只要是csdn的用户上传的图片,其地址都只跟图片本身的id关联,跟用户账号id无关。也就是说,你看到别人博客里面的图片,只需要拷贝其链接,就可以直接贴到自己的文章里面。

例如下面我这张捕鱼图片,就可以直接找到地址,然后直接提到文章里面去。
https://i-blog.csdnimg.cn/blog_migrate/506e46f98477b584874779a6053537ef.gif
在这里插入图片描述

个人图片

没有了个人相册功能,又想要管理自己的图片集,该怎么做呢?还是有一个方法可以实现。
这里给大家介绍一下实现过程,原创文章,请认准大掌教,Q63858323。

  1. 点击写博客按钮,进入markdown编辑器界面。
  2. 点击插入图片,然后上传图片到文章里面。
  3. 可以传很多图片,然后点击发布文章。
  4. 点击保存为草稿。

在这里插入图片描述
这样,所有的图片都可以在这个草稿里面找到了。
下一篇将给大家介绍如何实现自定义栏目。

下面是MATLAB图像复原中常用的一些评价指标的简单代码实现: 1. PSNR(峰值信噪比) ```matlab function psnr_value = psnr(original_image, restored_image) mse_value = mean(mean((double(original_image) - double(restored_image)).^2)); if(mse_value == 0) psnr_value = 100; else psnr_value = 10*log10(255^2/mse_value); end end ``` 2. SSIM(结构相似性) ```matlab function ssim_value = ssim(original_image, restored_image) k1 = 0.01; k2 = 0.03; L = 255; C1 = (k1*L)^2; C2 = (k2*L)^2; mu1 = mean2(original_image); mu2 = mean2(restored_image); sigma1 = std2(original_image); sigma2 = std2(restored_image); sigma12 = cov2(original_image,restored_image); numerator = (2*mu1*mu2 + C1)*(2*sigma12 + C2); denominator = (mu1^2 + mu2^2 + C1)*(sigma1^2 + sigma2^2 + C2); ssim_value = numerator/denominator; end ``` 3. MSE(均方误差) ```matlab function mse_value = mse(original_image, restored_image) mse_value = mean(mean((double(original_image) - double(restored_image)).^2)); end ``` 4. MAE(平均绝对误差) ```matlab function mae_value = mae(original_image, restored_image) mae_value = mean(mean(abs(double(original_image) - double(restored_image)))); end ``` 5. SNR(信噪比) ```matlab function snr_value = snr(original_image, restored_image) mse_value = mean(mean((double(original_image) - double(restored_image)).^2)); snr_value = 10*log10(mean(mean(double(original_image).^2))/mse_value); end ``` 6. ISNR(改进信噪比) ```matlab function isnr_value = isnr(original_image, restored_image, noise_image) mse_restored = mean(mean((double(original_image) - double(restored_image)).^2)); mse_noise = mean(mean((double(original_image) - double(noise_image)).^2)); isnr_value = 10*log10(mse_noise/mse_restored); end ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值