定义:使样本事件发生概率最大的参数值,作为总体参数的估计值,就是极大似然估计。
比如箱子中有100个球,共两种颜色白和黑。已知白球和黑球的比例是1:99(但不知道谁是1)。目标是估计箱子中什么颜色是99个。随机抽取一个球,发现是白球。那么从直观上讲,是不是大概率箱子中是99个白球?当然也有可能箱子中是99个黑球,正好有1个白球还正好被抽到了。但是明显这种情况概率较小。
上面这个例子,就是极大似然估计的过程。选择的是概率最大的参数。
无偏性的含义是:用样本估计的参数值的期望,等于真实值。
定义:使样本事件发生概率最大的参数值,作为总体参数的估计值,就是极大似然估计。
比如箱子中有100个球,共两种颜色白和黑。已知白球和黑球的比例是1:99(但不知道谁是1)。目标是估计箱子中什么颜色是99个。随机抽取一个球,发现是白球。那么从直观上讲,是不是大概率箱子中是99个白球?当然也有可能箱子中是99个黑球,正好有1个白球还正好被抽到了。但是明显这种情况概率较小。
上面这个例子,就是极大似然估计的过程。选择的是概率最大的参数。
无偏性的含义是:用样本估计的参数值的期望,等于真实值。
打赏作者