智能运维(AIOps)系统中的异常检测方案

本文介绍了在AIOps系统中异常检测的重要性及挑战,详细讲解了基于监督学习的解决方案,包括预处理、特征提取、模型训练和异常检测阶段。采用Python、Keras等工具,通过样本均衡策略和深度学习模型来应对不平衡数据和实时检测需求。实验证明,该方案在多个数据集上表现出稳定性和高F-Score。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://mp.weixin.qq.com/s/okKnaqJVV7bfS1_iUtdIWg

1.概览

异常检测是智能运维(AIOps)系统中一项基础且重要功能,其旨在通过算法自动地发现KPI时间序列数据中的异常波动,为后续的告警、自动止损、根因分析等提供决策依据。在实际场景下,由于异常点数据稀少,异常类型多样以及KPI类型多样,给异常检测带来了很大的挑战。

本文整理了LogicMonitor-AI团队在AIOps决赛暨首届AIOps研讨会中的分享内容,主要介绍了我们在AIOps异常检测竞赛中的算法设计思路和实现细节。
这里写图片描述
接下来主要分三部分来介绍:

• 首先介绍这次竞赛的背景和需求,在此基础上给出我们方案的设计原则

• 第二部分会详细介绍这次竞赛中使用的算法方案

• 最后探讨方案的不足与改进计划

2.需求分析

这里写图片描述
问题描述

在竞赛中,主办方提供了两份数据集,分别用作训练和测试,数据集由若干KPI时间序列组成,这些数据都来源于真实的运维场景。训练数据事先由运维人员手工标注出了异常段,要求根据训练数据生成模型并对测试数据进行异常检测(即对每个数据点标注是否为异常点)。

评估

通过对比测试集上模型的检测结果与真实标注数据,计算F-Score作为算法的评估标准,考察算法的精准率和召回率。通常情况下,运维人员往往只关心异常检测算法能否检测到某一连续异常区间,而非检测到该异常区间的每一个异常点。因此,对于连续的异常段,规定了时效性窗口,只要在窗口内检出异常点,那么该异常段都算作成功检出,否则都判为失败。

考虑到算法的实用性,竞赛还补充了几点规则:

• 禁用手工干预:在模型训练阶段,不允许手动地建立从“KPI曲线ID或KPI曲线计算得出的特征”到“算法和参数”的一

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值