1、287. 寻找重复数
给定一个包含 n + 1 个整数的数组 nums,其数字都在 1 到 n 之间(包括 1 和 n),可知至少存在一个重复的整数。假设只有一个重复的整数,找出这个重复的数。
示例 1:
输入: [1,3,4,2,2]
输出: 2
示例 2:
输入: [3,1,3,4,2] 输出: 3
说明:
- 不能更改原数组(假设数组是只读的)。
- 只能使用额外的 O(1) 的空间。
- 时间复杂度小于 O(n2) 。
- 数组中只有一个重复的数字,但它可能不止重复出现一次。
方法一:改变了原来的数组,严格说不对
class Solution { public: int findDuplicate(vector<int>& nums) { if(nums.empty()) return -1; for(int i=0;i<nums.size();++i)//判断输入是否满足条件 { if(nums[i] <1 || nums[i]>nums.size()) return -1; } for(int i=0;i<nums.size();++i) //输入是(1,n)的数字(包括 1 和 n) { while(nums[i] != i+1) { if(nums[i] == nums[nums[i]-1]) return nums[i]; swap(nums[i],nums[nums[i]-1]); } } return -1; } };
方法二:不改变原来数组的方法,二分搜索
题目要求我们不能改变原数组,即不能给原数组排序,又不能用多余空间,那么哈希表神马的也就不用考虑了,又说时间小于O(n2),也就不能用brute force的方法,那我们也就只能考虑用二分搜索法了,我们在区别[1, n]中搜索,首先求出中点mid,然后遍历整个数组,统计所有小于等于mid的数的个数,如果个数小于等于mid,则说明重复值在[mid+1, n]之间,反之,重复值应在[1, mid-1]之间,然后依次类推,直到搜索完成,此时的low就是我们要求的重复值。
class Solution { public: int findDuplicate(vector<int>& nums) { if(nums.empty()) return 0;
int low = 1, high = nums.size()-1; while(low<high) { int mid = (low+high)/2;//找到(1,n)的中间的数 int count = 0; for(int i=0;i<nums.size();++i) { if(nums[i] <= mid)//找到数组中比中间的数小的所有数的个数 count++; } if(count <= mid)//如果个数小于中间的数,则重复的数在数组右边,反之在左边 low = mid+1; else high = mid; } return low; } };
2、442. 数组中重复的数据
给定一个整数数组 a,其中1 ≤ a[i] ≤ n (n为数组长度), 其中有些元素出现两次而其他元素出现一次。
找到所有出现两次的元素。
你可以不用到任何额外空间并在O(n)时间复杂度内解决这个问题吗?
示例:
输入: [4,3,2,7,8,2,3,1] 输出: [2,3]
下面这种方法是将nums[i]置换到其对应的位置nums[nums[i]-1]上去,比如对于没有重复项的正确的顺序应该是[1, 2, 3, 4, 5, 6, 7, 8],
而我们现在却是[4,3,2,7,8,2,3,1],
我们需要把数字移动到正确的位置上去,比如第一个4就应该和7先交换个位置,
以此类推,最后得到的顺序应该是[1, 2, 3, 4, 3, 2, 7, 8],我们最后在对应位置检验,
如果nums[i]和i+1不等,那么我们将nums[i]存入结果res中即可,
class Solution { public: vector<int> findDuplicates(vector<int>& nums) { vector<int> res; if(nums.empty()) return res; for(int i=0;i<nums.size();++i) { while(nums[i] != nums[nums[i]-1]) { swap(nums[i], nums[nums[i]-1]); } /* //或者用 if 来判断 if(nums[i] != nums[nums[i]-1]) { swap(nums[i], nums[nums[i]-1]); --i;// 交换后的该值也不一定能对应上序号,所以要重新判断一下,直到找到 }*/ } for(int i=0;i<nums.size();++i) { if(nums[i] != i+1) res.push_back(nums[i]); } return res; } };
3、448. 找到所有数组中消失的数字
给定一个范围在 1 ≤ a[i] ≤ n ( n = 数组大小 ) 的 整型数组,数组中的元素一些出现了两次,另一些只出现一次。
找到所有在 [1, n] 范围之间没有出现在数组中的数字。
您能在不使用额外空间且时间复杂度为O(n)的情况下完成这个任务吗? 你可以假定返回的数组不算在额外空间内。
示例:
输入: [4,3,2,7,8,2,3,1] 输出: [5,6]
这道题跟上面那个数组中找出现两次数字的一样。那道题让找出所有重复的数字,这道题让找不存在的数,这类问题的一个重要条件就是1 ≤ a[i] ≤ n (n = size of array),不然很难在O(1)空间和O(n)时间内完成。区别在,一个保存数组数据,一个保存i+1.我们最后在对应位置检验,如果nums[i]和i+1不等,那么我们将i+1存入结果res中即可。
class Solution { public: vector<int> findDisappearedNumbers(vector<int>& nums) { vector<int> res; if(nums.empty()) return res; for(int i=0;i<nums.size();++i) { while(nums[i] != nums[nums[i]-1]) { swap(nums[i], nums[nums[i]-1]); } /* //或者用 if 来判断 if(nums[i] != nums[nums[i]-1]) { swap(nums[i], nums[nums[i]-1]); --i;// 交换后的该值也不一定能对应上序号,所以要重新判断一下,直到找到 }*/ } for(int i=0;i<nums.size();++i) { if(nums[i] != i+1) res.push_back(i+1);//这里是区别 } return res; } };