高等代数_第2章:证明_Laplace定理

说明

1、这个证明是我根据自己对行列式符号的理解原创的,可能我的理解不到位,会有什么地方有问题,大家要是考到这个定理的证明请谨慎使用

2、如果大家手上有丘老写的高等代数教材可以先看一下2.1 例4这道例题,有助于理解下面的证明

3、可能证明过程有些跳跃,如果对证明过程有什么疑问可以私我或者评论,交流交流一同进步

证明

latex源码

\begin{matrix}
  一、前提知识:\hfill\\
  1、关于逆序数\hfill\\
   \quad k元排列A=a_{1}a_{2}...a_{k}\tau(A)=t1\hfill\\
   \quad n-k元排列B=b_{1}b_{2}...b_{n-k}\tau(B)=t2\hfill\\
   \quad n元排列C=AB=a_{1}a_{2}...a_{k}b_{1}b_{2}...b_{n-k}\tau(C)=t3\hfill\\
   \quad k元排列A中元素a_{i}对n-k元排列B中所有元素所形成的逆序数记作a_{i}\_B\hfill\\
   \quad 则有t3=t1+t2+\sum_{i=1}^{k}a_{i}\_B\hfill\\
  2、行列式k阶子式的定义\hfill\\
   \quad n阶行列式|A|中任意取定k行、k列(1\le k\le n),位于这些行和列的交叉处的k^{2}个元\hfill\\
   \quad 素按原来的排法组成的k阶行列式,称为|A|的一个k阶子式\hfill\\
   \quad 取定|A|的第i_{1},i_{2},...,i_{k}(i_{1}<i_{2}<i_{k}),第j_{1},j_{2},...,j_{k}(j_{1}<j_{2}<j_{k})\hfill\\
   \quad 所的得到的k阶子式记作
A
\begin{pmatrix}
  i_{1},i_{2},...,i_{k}\\
  j_{1},j_{2},...,j_{k}
\end{pmatrix}
\hfill\\
\\

二、Laplace定理描述:\hfill\\
   \quad 在n阶行列式|A|中,取定i_{1},i_{2},...,i_{k}(i_{1}<i_{2}<...<i_{k}),则这\hfill\\
   \quad k行元素形成的所有k阶子式与它们的代数余子式的乘积之和等于|A|,即\hfill\\
   \quad |A|=\sum_{1\le i_{1}<i_{2}<...<i_{k}\le n}
A
\begin{pmatrix}
  i_{1},i_{2},...,i_{k}\\
  j_{1},j_{2},...,j_{k}
\end{pmatrix}
(-1)^{(i_{1},i_{2},...,i_{k})+(j_{1},j_{2},...,j_{k})}
A
\begin{pmatrix}
  i_{1}^{'},i_{2}^{'},...,i_{n-k}^{'}\\
  j_{1}^{'},j_{2}^{'},...,j_{n-k}^{'}
\end{pmatrix}
\hfill\\
\\

三、证明\hfill\\
\quad 关于这个定理比较难以理解的是其正负号的由来,所以下面的证明也是证明这个式子\hfill\\
\quad 需证:(-1)^{(i_{1}+i_{2}+...+i_{k})+(j_{1}+j_{2}+...+j_{k})}\hfill\\

\quad 由行列式的展开式可知,符号与行列式每一项的行列指标组成的排列的逆序数有关\hfill\\
\quad 那我们先将其行指标组成的n元排列提取出来:i_{1}i_{2}...i_{k}i_{1}^{'}i_{2}^{'}...i_{n-k}^{'}\hfill\\
\quad 由前提知识1可知\hfill\\
\quad \tau (i_{1}i_{2}...i_{k}i_{1}^{'}i_{2}^{'}...i_{n-k}^{'})\hfill\\
\quad =\tau (i_{1}i_{2}...i_{k})+\tau (i_{1}^{'}i_{2}^{'}...i_{n-k}^{'})+(i_{1}i_{2}...i_{k})对(i_{1}^{'}i_{2}^{'}...i_{n-k}^{'})中所有元素产生逆序数\hfill\\
\quad \tau (i_{1}i_{2}...i_{k})由k阶子式
A
\begin{pmatrix}
  i_{1},i_{2},...,i_{k}\\
  j_{1},j_{2},...,j_{k}
\end{pmatrix}
负责产生\hfill\\
\quad \tau (i_{1}^{'}i_{2}^{'}...i_{n-k}^{'})由n-k阶子式
A
\begin{pmatrix}
  i_{1}^{'},i_{2}^{'},...,i_{n-k}^{'}\\
  j_{1}^{'},j_{2}^{'},...,j_{n-k}^{'}
\end{pmatrix}
负责产生\hfill\\
\quad (i_{1}i_{2}...i_{k})对(i_{1}^{'}i_{2}^{'}...i_{n-k}^{'})中所有元素产生的逆序数对符号的影响就是(i_{1}+i_{2}+...+i_{k})\hfill\\
\quad 记(i_{1}i_{2}...i_{k})(i_{1}^{'}i_{2}^{'}...i_{n-k}^{'})中所有元素产生的逆序数为t\hfill\\
\quad 现在的任务就转换为证明:t与(i_{1}+i_{2}+...+i_{k})之间的关系\hfill\\
\quad 设T1=i_{1}i_{2}...i_{k},T2=i_{1}^{'}i_{2}^{'}...i_{n-k}^{'}\hfill\\
\quad 由n元排列逆序数的性质可知T1、T2中元素位置变换不影响t的大小\hfill\\
\quad 于是将T1、T2中元素分别按照从小到大的顺序排列,得到新的序列\hfill\\
\quad T1'=i_{j1}i_{j2}...i_{jk}(i_{j1}<i_{j2}<...<i_{jk})\hfill\\
\quad T2'=i_{j1}^{'}i_{k2}^{'}...i_{j(n-k)}^{'}(i_{j1}^{'}<i_{k2}^{'}<...<i_{j(n-k)}^{'})\hfill\\
\quad 将T1'和T2'合并为T=i_{j1}i_{j2}...i_{jk}\:i_{j1}^{'}i_{k2}^{'}...i_{j(n-k)}^{'}\hfill\\
\quad 稍微提一下,此时T是一个n元排列,其元素值区间:[1\quad n]\hfill\\
\quad 在i_{j1}后面且比它小的元素有i_{j1}-1个,它产生的逆序数为i_{j1}-1\hfill\\
\quad 在i_{j2}后面且比它小的元素有i_{j2}-2个(i_{j1}比它小但在它前面所以多减1个),它产生的逆序数为i_{j2}-2\hfill\\
\quad ...\hfill\\
\quad 在i_{jk}后面且比它小的元素有i_{jk}-k个,它产生的逆序数为i_{jk}-k\hfill\\
\quad 从i_{j1}^{'}往后都是顺序,于是无逆序数产生\hfill\\
\quad 所以t=i_{j1}-1+i_{j2}-2+...+i_{jk}-k(补充:丘老写的高代书里2.1 例4证明了这个结论)\hfill\\
\quad t=(i_{j1}+i_{j2}+...+i_{jk})-(1+2+...+k)\hfill\\
\quad (i_{j1}+i_{j2}+...+i_{jk})(i_{1}i_{2}...i_{k})排序得到,两者的和相等\hfill\\
\quad 于是有t=(i_{1}+i_{2}+...+i_{k})-(1+2+...+k)=\sum_{j=1}^{k}i_{j}-\frac{k(k+1)}{2}\hfill\\
\quad 现在我们得到了行指标对符号的影响t=\sum_{j=1}^{k}i_{j}-\frac{k(k+1)}{2}\hfill\\
\quad 同理,列指标对符号的影响t1=\sum_{l=1}^{k}j_{l}-\frac{k(k+1)}{2}\hfill\\
\quad t+t1=\sum_{j=1}^{k}i_{j}+\sum_{l=1}^{k}j_{l}-k*(k+1)\hfill\\
\quad 因为k*(k+1)是偶数\hfill\\
\quad 所以有(-1)^{t+t1}=(-1)^{\sum_{j=1}^{k}i_{j}+\sum_{l=1}^{k}j_{l}}\hfill\\
\quad 证毕\hfill\\
\quad \hfill\\
\end{matrix}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值