二叉树递归遍历

<!doctype html>
<html lang="en">
 <head>
  <meta charset="UTF-8">
  <meta name="Generator" content="EditPlus®">
  <meta name="Author" content="">
  <meta name="Keywords" content="">
  <meta name="Description" content="">
  <title></title>
 </head>
 <body>
<script>
var tree= {
    value: 'd',
    left: {
        value: 'o',
        left: {
            value: 'g',
            left: {
                value: 'n',
                left: {
                    value: 'o',
                    left: {
                        value: 'd',
                        left: {value: 'e'}
                    },
                },
            },
            right: {value: 'a'}
        },
        right: {
            value: 'r',
            left: {value: 'n'},
            right: {value: '2'}
        }
    },
    right: {
        value: 'n',
        left: {
            value: 'u',
            left: {value: '0'},
            right: {
                value: '1'
            }
        },
        right: {
            value: 'i',
            left: {value: '6'},
            right: {
                value: 'n'
            }
        }
    }
};
var dlrAry=[];
function dlr(node){
  if (node)
  {
      dlrAry.push(node.value);
      dlr(node.left);
      dlr(node.right);
  }
 }
 dlr(tree);
 alert(dlrAry.join(''))
 //先序遍历(dlr)
var dlrAry=[];
function dlr(node){
    if(node){
        dlrAry.push(node.value);
        dlr(node.left);
        dlr(node.right);
    }
}
dlr(tree);
console.log('先序遍历:'+dlrAry.join(''));
//中序遍历(ldr)
var ldrAry=[];
function ldr(node){
    if(node){
        ldr(node.left);
        ldrAry.push(node.value);
        ldr(node.right);
    }
}
ldr(tree);
console.log('中序遍历:'+ldrAry.join(''));
//后序遍历(lrd)
var lrdAry=[];
function lrd(node){
    if(node){
        lrd(node.left);
        lrd(node.right);
        lrdAry.push(node.value);
    }
}
lrd(tree);
console.log('后序遍历:'+lrdAry.join(''));
</script>
 </head>
 <body>
  
 </body>
</html>

 

转载于:https://www.cnblogs.com/yu-hailong/p/7446661.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值