(转)POJ 1163 The Triangle 解题报告

算法1:递归

设 f(i, j) 是从(i, j)点出发向下走的最长路径。

f(i, j) = max( f(i+1, j),  f(i+1, j+1) ).

输出f(0, 0).

code:

# include <iostream.h>
#
define MAX 101
int triangle[ MAX ][ MAX ];
int n;
int longestPath(int i
, int j);
void main(){
    int i
, j;
    cin 
>>  n;
    
for (i = 0 ;i < n;i ++
        
for (j = 0 ;j <= i;j ++ )
            cin
>>  triangle[i][j];
        cout
<< longestPath( 0 , 0 << endl;
}
int longestPath(int i
, int j){
    
if (i == n) 
        
return   0 ;
    int x 
= longestPath(i + 1 , j);
    int y 
= longestPath(i + 1 , j + 1 );
    
if (x < y) 
        x
= y;
    
return  x + triangle[i][j];
}

超时!!!

原因:大量重复计算

f(0, 0) = max( f(1, 0),  f(1, 1) ).

f(1, 0) = max( f(2, 0),  f(2, 1) ).

f(1, 1) = max( f(2, 1),  f(2, 2) ).

f(2, 0) = max( f(3, 0),  f(3, 1) ).

f(2, 1) = max( f(3, 1),  f(3, 2) ).

f(2, 2) = max( f(3, 1),  f(3, 2) ).

f(4, 0) = max( f(5, 0),  f(5, 1) ).

算法2:动态规划

一般的转化方法:

原来递归函数有几个参数,就定义一个几维的数组,数组的下标是递归函数参数的取值范围,数组元素的值是递归函数的返回值,这样就可以从边界开始,逐步填充数组,相当于计算递归函数值的逆过程。

code:

# include<stdio.h>
#
define MAX 100
int triangle[ MAX ][ MAX ];
int main()
{
    int n
,  i ,  j;
    scanf(
" %d " ,   & n);
    
for (i = 0 ; i < n; i ++ )
        
for (j = 0 ; j <= i; j ++ )
            scanf(
" %d " ,  triangle[i] + j);
    
for (i = n - 2 ; i >= 0 ; i -- )
        
for (j = 0 ; j <= i; j ++ )
            triangle[i][j] 
+=  triangle[i + 1 ][j]  >  triangle[i + 1 ][j + 1 ?  triangle[i + 1 ][j]  :  triangle[i + 1 ][j + 1 ];
    
printf ( " %d\n " ,  triangle[ 0 ][ 0 ]);
    
return   0 ;
}

转载于:https://www.cnblogs.com/liyazhou/archive/2010/07/14/1777144.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值