[Ynoi2015]我回来了

题目大意:

给定一张无向无权图,每次给定若干个二元组\((x_i,y_i)\),定义点\(u\)满足条件,当且仅当存在\(i\),并满足\(dist(u,x_i)\leqslant y_i\)(\(dist(u,v)\)表示\(u,v\)两点的距离)。每次询问求满足条件的点个数。

解题思路:

在太阳西斜的这个世界里,置身天上之森。等这场战争结束之后,不归之人与望眼欲穿的众人, 人人本着正义之名,长存不灭的过去、逐渐消逝的未来。我回来了,纵使日薄西山,即便看不到未来,此时此刻的光辉,盼君勿忘。————世界上最幸福的女孩

珂朵莉,最可爱了呢。

---

我们定义\(f[i][j]\)为从点\(i\)出发,最短路小于等于\(j\)的点的集合。这个可以用bitset压位存储。

计算\(f[i][j]\),我们首先要知道任意两点对间最短路,然后计算出从每个点出发,最短路恰好为\(j\)的点的集合。然后前缀或一遍就是\(f[i][j]\)。

计算都可以在\(O(\dfrac{n^3}{\omega})\)的复杂度内完成。

而求任意点对间最短路,就从每个点开始BFS一遍即可。时间复杂度\(O(n(n+m))\)。

最后处理询问的时候,就把每个\((x,y)\)对应的\(f[x][y]\)都取并集,然后求其中1的个数即可。时间复杂度\(O(\dfrac{n\sum a}{\omega})\)。

总时间复杂度\(O(n(n+m)+\dfrac{n^3+n\sum a}{\omega})\),空间复杂度\(O(\dfrac{n^3}{\omega})\)。

然后听说这道题卡前向星

似乎是由于访问连续内存会比较快的原因,用vector存边就跑的飞快,而前向星就T飞了。

C++ Code:

#include<bitset>
#include<cstdio>
#include<cctype>
#include<queue>
#include<vector>
#define N 1003
#ifdef ONLINE_JUDGE
struct istream{
	char buf[23333333],*s;
	inline istream(){
		buf[fread(s=buf,1,23333330,stdin)]='\n';
		fclose(stdin);
	}
	inline istream&operator>>(int&d){
		d=0;
		for(;!isdigit(*s);++s);
		while(isdigit(*s))
		d=(d<<3)+(d<<1)+(*s++^'0');
		return*this;
	}
}cin;
#else
#include<iostream>
using std::cin;
#endif
std::bitset<N>a[N][N];
int n,m,q,dis[N][N];
std::vector<int>G[N];
void bfs(int s,int*dis){
	for(int i=1;i<=n;++i)dis[i]=1002;
	static std::queue<int>q;
	dis[s]=0;
	for(q.push(s);!q.empty();){
		int u=q.front();q.pop();
		for(int i:G[u])
		if(dis[i]==1002){
			dis[i]=dis[u]+1;
			q.push(i);
		}
	}
	for(int i=1;i<=n;++i)
	a[s][dis[i]].set(i);
	for(int i=1;i<=n;++i)a[s][i]|=a[s][i-1];
}
int main(){
	cin>>n>>m>>q;
	while(m--){
		int u,v;
		cin>>u>>v;
		G[u].push_back(v);
		G[v].push_back(u);
	}
	for(int i=1;i<=n;++i)bfs(i,dis[i]);
	while(q--){
		std::bitset<N>ans;
		int x,u,v;
		cin>>x;
		while(x--){
			cin>>u>>v;
			if(v>n)v=n;
			ans|=a[u][v];
		}
		printf("%d\n",ans.count());
	}
	return 0;
}

 

  

 

转载于:https://www.cnblogs.com/Mrsrz/p/10096392.html

题目 P5413 "YNOI2019 骑单车" 是一个经典的动态规划和贪心算法的问题。该题主要涉及两个概念:路径规划和状态转移方程。 **背景描述** 假设你在一个二维网格上,每个单元格代表一个地点,你需要从起点出发骑车到终点,并尽可能地减少骑行时间。网格中的每个单元格都有两种可能的状态:平地(速度不变)或斜坡(速度减半)。你的目标是找到一条最短的路线。 **关键点解析** 1. **动态规划**:通常用于求解最优化问题。在这个问题中,我们可以定义一个二维数组 dp[i][j] 表示从起点到位置 (i, j) 的最短行驶时间。状态转移方程会根据当前位置的性质(平地还是斜坡)以及到达此位置的最短路径来自之前的节点计算。 2. **状态转移**:对于平地,dp[i][j] = dp[pi][pj] + cost,表示直接移动到相邻位置的时间;对于斜坡,dp[i][j] = min(dp[pi][pj], dp[pi][pj-1]) + cost/2,因为斜坡速度减半,所以需要选择更早的时刻经过。 3. **贪心策略**:有时候,为了达到全局最优,初始看起来不是最优的选择可能是正确的。但在这个问题中,贪心策略可能并不适用,因为我们不能仅依据当前状态做出决策,需要考虑到整个路径。 4. **边界条件**:初始化 dp 数组时,起点时间设为 0,其余位置设为正无穷大,保证一开始就只会向可达的位置移动。 **代码实现** 实现这样的动态规划算法通常需要用到一个优先队列(如最小堆),以便于高效地查找之前节点的最优时间。 **相关问题--:** 1. 如何设计状态转移方程来处理平地和斜坡的情况? 2. 这个问题是否存在剪枝操作以提高效率? 3. 如果网格大小非常大,如何避免存储所有 dp 值导致的空间爆炸?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值