题目大意:有n个数,opt个操作,并给你md、min、max。
每种操作有以下两种:1.给一段区间加一个固定值。2.询问一段区间内满足$min\leq T*i\ mod\ md\leq max$(T是当前的数,i是当前数的下标)的数的个数。
在这opt个操作里,询问不超过1000个。
这之后还有final($<10^7$)个询问(同上面的询问),保证这些询问中间没有修改操作。
要你实现这些操作。
解题思路:一开始被这些巨大的数据唬住了,经过思考看了标程后突然发现并不是很难。
对于区间和操作,很容易想到差分解决,但中间还有询问操作,怎么办?
题目说中间最多1000个询问,而n最大才80000,对于每一个询问,都扫描一遍差分数组的话,不考虑常数则要执行大约80000000次操作。
但标程告诉我这样是可以卡过去的(洛谷神评测机)。
再来考虑后面的询问,由于没有了修改操作,我们可以维护一个前缀和,来实现$O(1)$询问。
然后就玄学地卡了过去。
C++ Code:
#include<cstdio>
#include<cctype>
#include<cstring>
#define ll long long
int n,opt,mod,min,max,l,r,b[80003];
ll a[80003];
char c;
inline int readint(){
char c=getchar();
bool b=false;
for(;!isdigit(c);c=getchar())b=c=='-';
int d=0;
for(;isdigit(c);c=getchar())
d=(d<<3)+(d<<1)+(c^'0');
return b?-d:d;
}
inline void putint(int p){
if(p==0){
putchar('0');
putchar('\n');
return;
}
int w=1;
while(w<=p)w*=10;w/=10;
while(w){
putchar(p/w+'0');
p%=w;
w/=10;
}
putchar('\n');
}
int main(){
n=readint(),opt=readint(),mod=readint(),min=readint(),max=readint();
memset(a,0,sizeof a);
while(opt--){
for(c=getchar();!isalpha(c);c=getchar());
l=readint(),r=readint();
if(c=='A'){
int num=readint();
a[l]+=num,a[r+1]-=num;
}else{
int cnt=0;
ll sum=0;
for(int i=1;i<=r;++i){
sum+=a[i];
if(i>=l)cnt+=(int)(sum%mod*i%mod>=min&&sum%mod*i%mod<=max);
}
putint(cnt);
}
}
b[0]=0;
ll sum=0;
for(int i=1;i<=n;++i){
sum+=a[i];
b[i]=b[i-1]+(int)(sum%mod*i%mod>=min&&sum%mod*i%mod<=max);
}
for(int final=readint();final--;){
l=readint(),r=readint();
putint(b[r]-b[l-1]);
}
return 0;
}