题目描述
参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 nn 个深埋在地下的宝藏屋, 也给出了这 nn 个宝藏屋之间可供开发的mm 条道路和它们的长度。
小明决心亲自前往挖掘所有宝藏屋中的宝藏。但是,每个宝藏屋距离地面都很远, 也就是说,从地面打通一条到某个宝藏屋的道路是很困难的,而开发宝藏屋之间的道路 则相对容易很多。
小明的决心感动了考古挖掘的赞助商,赞助商决定免费赞助他打通一条从地面到某 个宝藏屋的通道,通往哪个宝藏屋则由小明来决定。
在此基础上,小明还需要考虑如何开凿宝藏屋之间的道路。已经开凿出的道路可以 任意通行不消耗代价。每开凿出一条新道路,小明就会与考古队一起挖掘出由该条道路 所能到达的宝藏屋的宝藏。另外,小明不想开发无用道路,即两个已经被挖掘过的宝藏 屋之间的道路无需再开发。
新开发一条道路的代价是:
\mathrm{L} \times \mathrm{K}L×K
L代表这条道路的长度,K代表从赞助商帮你打通的宝藏屋到这条道路起点的宝藏屋所经过的 宝藏屋的数量(包括赞助商帮你打通的宝藏屋和这条道路起点的宝藏屋) 。
请你编写程序为小明选定由赞助商打通的宝藏屋和之后开凿的道路,使得工程总代 价最小,并输出这个最小值。
输入格式
第一行两个用空格分离的正整数 n,mn,m,代表宝藏屋的个数和道路数。
接下来 mm 行,每行三个用空格分离的正整数,分别是由一条道路连接的两个宝藏 屋的编号(编号为 1-n1−n),和这条道路的长度 vv。
输出格式
一个正整数,表示最小的总代价。
输入输出样例
4 5 1 2 1 1 3 3 1 4 1 2 3 4 3 4 1
4
4 5 1 2 1 1 3 3 1 4 1 2 3 4 3 4 2
5
说明/提示
【样例解释1】
小明选定让赞助商打通了11 号宝藏屋。小明开发了道路 1 \to 21→2,挖掘了 22 号宝 藏。开发了道路 1 \to 41→4,挖掘了 44 号宝藏。还开发了道路 4 \to 34→3,挖掘了33号宝 藏。工程总代价为:1 \times 1 + 1 \times 1 + 1 \times 2 = 41×1+1×1+1×2=4
【样例解释2】
小明选定让赞助商打通了11 号宝藏屋。小明开发了道路 1 \to 21→2,挖掘了 22 号宝 藏。开发了道路 1 \to 31→3,挖掘了 33 号宝藏。还开发了道路 1 \to 41→4,挖掘了44号宝 藏。工程总代价为:1 \times 1 + 3 \times 1 + 1 \times 1 = 51×1+3×1+1×1=5
【数据规模与约定】
对于20\%20%的数据: 保证输入是一棵树,1 \le n \le 81≤n≤8,v \le 5000v≤5000 且所有的 vv都相等。
对于 40\%40%的数据: 1 \le n \le 81≤n≤8,0 \le m \le 10000≤m≤1000,v \le 5000v≤5000 且所有的vv都相等。
对于70\%70%的数据: 1 \le n \le 81≤n≤8,0 \le m \le 10000≤m≤1000,v \le 5000v≤5000
对于100\%100%的数据: 1 \le n \le 121≤n≤12,0 \le m \le 10000≤m≤1000,v \le 500000v≤500000
思路:
用一个二进制数表示当前状态,每一位代表某个屋子是否到达
用邻接矩阵存边,f数组用于记忆化
枚举出发点,逐一进行记忆化搜索
对于每一个状态枚举每一个屋子,如果中间有路,而且未开发,就搜索
注意深度用数组存
1 #include <iostream> 2 #include <cstdio> 3 #include <algorithm> 4 #define inf 2147483647 5 #define R register 6 using namespace std; 7 int g[13][13],dis[13],ans=inf,f[4097]; 8 int m,n; 9 inline void dfs(int x) 10 { 11 for(R int i=1;i<=n;i++) 12 if((1<<(i-1)&x)) 13 { 14 for(R int j=1;j<=n;j++) 15 if(((1<<(j-1))|x)&&g[i][j]^inf) 16 { 17 if(f[x|(1<<j-1)]>f[x]+dis[i]*g[i][j]) 18 { 19 int temp=dis[j]; 20 dis[j]=dis[i]+1; 21 f[x|(1<<(j-1))]=f[x]+dis[i]*g[i][j]; 22 dfs(x|(1<<(j-1))); 23 dis[j]=temp; 24 } 25 } 26 } 27 } 28 int main() 29 { 30 cin>>n>>m; 31 for(R int i=1;i<=n;i++) for(R int j=1;j<=n;j++) g[i][j]=inf; 32 int u,v,z; 33 for(R int i=1;i<=m;i++) 34 { 35 cin>>u>>v>>z; 36 g[u][v]=min(g[u][v],z); 37 g[v][u]=min(g[v][u],z); 38 } 39 for(R int j=1;j<=n;j++) 40 { 41 for(R int i=1;i<=n;i++) dis[i]=inf; 42 for(R int i=1;i<=(1<<n)-1;i++) f[i]=inf; 43 dis[j]=1; 44 f[1<<(j-1)]=0; 45 dfs(1<<(j-1)); 46 ans=min(ans,f[(1<<n)-1]); 47 } 48 cout<<ans<<endl; 49 return 0; 50 }