P3959 宝藏

题目描述

参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 nn 个深埋在地下的宝藏屋, 也给出了这 nn 个宝藏屋之间可供开发的mm 条道路和它们的长度。

小明决心亲自前往挖掘所有宝藏屋中的宝藏。但是,每个宝藏屋距离地面都很远, 也就是说,从地面打通一条到某个宝藏屋的道路是很困难的,而开发宝藏屋之间的道路 则相对容易很多。

小明的决心感动了考古挖掘的赞助商,赞助商决定免费赞助他打通一条从地面到某 个宝藏屋的通道,通往哪个宝藏屋则由小明来决定。

在此基础上,小明还需要考虑如何开凿宝藏屋之间的道路。已经开凿出的道路可以 任意通行不消耗代价。每开凿出一条新道路,小明就会与考古队一起挖掘出由该条道路 所能到达的宝藏屋的宝藏。另外,小明不想开发无用道路,即两个已经被挖掘过的宝藏 屋之间的道路无需再开发。

新开发一条道路的代价是:

\mathrm{L} \times \mathrm{K}L×K

L代表这条道路的长度,K代表从赞助商帮你打通的宝藏屋到这条道路起点的宝藏屋所经过的 宝藏屋的数量(包括赞助商帮你打通的宝藏屋和这条道路起点的宝藏屋) 。

请你编写程序为小明选定由赞助商打通的宝藏屋和之后开凿的道路,使得工程总代 价最小,并输出这个最小值。

输入格式

第一行两个用空格分离的正整数 n,mn,m,代表宝藏屋的个数和道路数。

接下来 mm 行,每行三个用空格分离的正整数,分别是由一条道路连接的两个宝藏 屋的编号(编号为 1-n1n),和这条道路的长度 vv。

输出格式

一个正整数,表示最小的总代价。

输入输出样例

输入 #1复制
4 5 
1 2 1 
1 3 3 
1 4 1 
2 3 4 
3 4 1 
 
输出 #1复制
4
输入 #2复制
4 5 
1 2 1 
1 3 3 
1 4 1 
2 3 4 
3 4 2  
输出 #2复制
5

说明/提示

【样例解释1】

小明选定让赞助商打通了11 号宝藏屋。小明开发了道路 1 \to 212,挖掘了 22 号宝 藏。开发了道路 1 \to 414,挖掘了 44 号宝藏。还开发了道路 4 \to 343,挖掘了33号宝 藏。工程总代价为:1 \times 1 + 1 \times 1 + 1 \times 2 = 41×1+1×1+1×2=4

【样例解释2】

小明选定让赞助商打通了11 号宝藏屋。小明开发了道路 1 \to 212,挖掘了 22 号宝 藏。开发了道路 1 \to 313,挖掘了 33 号宝藏。还开发了道路 1 \to 414,挖掘了44号宝 藏。工程总代价为:1 \times 1 + 3 \times 1 + 1 \times 1 = 51×1+3×1+1×1=5

【数据规模与约定】

对于20\%20%的数据: 保证输入是一棵树,1 \le n \le 81n8,v \le 5000v5000 且所有的 vv都相等。

对于 40\%40%的数据: 1 \le n \le 81n8,0 \le m \le 10000m1000,v \le 5000v5000 且所有的vv都相等。

对于70\%70%的数据: 1 \le n \le 81n8,0 \le m \le 10000m1000,v \le 5000v5000

对于100\%100%的数据: 1 \le n \le 121n12,0 \le m \le 10000m1000,v \le 500000v500000

 

 

 

思路:

用一个二进制数表示当前状态,每一位代表某个屋子是否到达

用邻接矩阵存边,f数组用于记忆化

枚举出发点,逐一进行记忆化搜索

对于每一个状态枚举每一个屋子,如果中间有路,而且未开发,就搜索

注意深度用数组存

 

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <algorithm>
 4 #define inf 2147483647
 5 #define R register
 6 using namespace std;
 7 int g[13][13],dis[13],ans=inf,f[4097];
 8 int m,n;
 9 inline void dfs(int x)
10 {
11     for(R int i=1;i<=n;i++)
12     if((1<<(i-1)&x))
13     {
14         for(R int j=1;j<=n;j++)
15         if(((1<<(j-1))|x)&&g[i][j]^inf)
16         {
17             if(f[x|(1<<j-1)]>f[x]+dis[i]*g[i][j])
18             {
19                 int temp=dis[j];
20                 dis[j]=dis[i]+1;
21                 f[x|(1<<(j-1))]=f[x]+dis[i]*g[i][j];
22                 dfs(x|(1<<(j-1)));
23                 dis[j]=temp;
24             }
25         }
26     }
27 }
28 int main()
29 {
30     cin>>n>>m;
31     for(R int i=1;i<=n;i++) for(R int j=1;j<=n;j++) g[i][j]=inf;
32     int u,v,z;
33     for(R int i=1;i<=m;i++)
34     {
35         cin>>u>>v>>z;
36         g[u][v]=min(g[u][v],z);
37         g[v][u]=min(g[v][u],z);
38     }
39     for(R int j=1;j<=n;j++)
40     {
41         for(R int i=1;i<=n;i++) dis[i]=inf;
42         for(R int i=1;i<=(1<<n)-1;i++) f[i]=inf;
43         dis[j]=1;
44         f[1<<(j-1)]=0;
45         dfs(1<<(j-1));
46         ans=min(ans,f[(1<<n)-1]);
47     }
48     cout<<ans<<endl;
49     return 0;
50 }

 

转载于:https://www.cnblogs.com/000226wrp/p/11340866.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值