I spent a whole afternoon trying to understand how to calculate the Hall coefficient when both electrons and holes contribute. First we make it clear than mobility can be positive and negative. https://www.physicsforums.com/threads/electrical-mobility-definition-confusion.815922/
For the details of the calculation see
- http://www.webcitation.org/5c0UeBBsZ
- http://materials.usask.ca/samples/HallEffectSemicon.pdf
- https://www2.warwick.ac.uk/fac/sci/physics/current/postgraduate/regs/mpags/ex5/techniques/electronic/hall-effect/carriers/
Notice the for Hall coefficient the magnetic field cannot be too strong.
Conclusion
The result it simple. If we take mobility of electrons and holes to be positive, the answer is \[ R_H = \frac{p\mu_p^2 - n\mu_n^2}{e(p\mu_p + n\mu_n)^2} \]. If choose the convention in which electron mobility is negative, \[ R_H = \frac{p\mu_p^2 - n\mu_n^2}{e(p\mu_p - n\mu_n)^2} \]. The trick is that the nominator of the fraction cannot be infinity.