转 关于二叉树的算法

原创 2007年10月15日 09:07:00

 // BTree.cpp : Defines the entry point for the console application.
/*
 作者:成晓旭
 时间:2001年7月2日(9:00:00-14:00:00)
 内容:完成二叉树的创建、前序遍历、中序遍历、后序遍历
 时间:2001年7月2日(14:00:00-16:00:00)
 内容:完成二叉树的叶子节点访问,交换左、右孩子
*/
#include "stdafx.h"
#include "stdlib.h"

#define  MAX_NODE 100
#define  NODE_COUNT1 8
#define  NODE_COUNT2 15

int TreeValue0[NODE_COUNT1][2] = {{'0',0},{'D',1},{'B',2},{'F',3},{'A',4},{'C',5},{'E',6},{'G',7}};
int TreeValue1[NODE_COUNT1][2] = {{'0',0},{'A',1},{'B',2},{'C',3},{'D',4},{'E',5},{'F',6},{'G',7}};
int TreeValue2[NODE_COUNT2][2] = {{'0',0},{'A',1},{'B',2},{'C',3},{'D',4},{'E',5},{'F',6},{'G',7},{'H',8},{'I',9},{'J',10},{'K',11},{'L',12},{'M',13},{'N',14}};
struct BTree
{
 int data;
 int order;
 BTree *lchild;
 BTree *rchild;
};

void Swap(int *p1,int *p2)
{
 int t;
 t = *p1;
 *p1 = *p2;
 *p2 = t;
}
/*
function CreateBTree()功能:创建一颗二叉树,并返回一个指向其根的指针
*/
BTree *CreateBTree(int data[][2],int n)
{
 BTree *Addr[MAX_NODE];
 BTree *p,
    *head; 
 int nodeorder,//节点序号
  noderoot, //节点的双亲
  i;
 if(n>MAX_NODE)
 {
  printf("参数错误!/n");
  return(0);
 }
 for(i=1;i<=n;i++)
 {
  p = (BTree *)malloc(sizeof(BTree));
  if(p==NULL)
  {
   printf("内存溢出错误!/n");
   return(0);
  }
  else
  {
   p->data = data[i][0];
   p->lchild = NULL;
   p->rchild = NULL;
   nodeorder = data[i][1];
   p->order = nodeorder;
   Addr[nodeorder] = p;
   if(nodeorder>1)
   {
    noderoot = nodeorder/2;
    if(nodeorder %2 == 0)
     Addr[noderoot]->lchild = p;
    else
     Addr[noderoot]->rchild = p;
   }
   else
    head = p;
   printf("BTree[%d] = %c/t",p->order,p->data);
  }
  //free(p);
 }
 return(head);
}

/*
function FirstOrderAccess0()功能:实现二叉树的前序遍历
二叉树前序遍历的思想:
 从根节点开始,沿左子树一直走到没有左孩子的节点为止,
依次访问所经过的节点,同时所经[节点]的地址进栈;
 当找到没有左孩子的节点时,从栈顶退出该节点的双亲的
右孩子,此时,此节点的左子树已访问完毕;
 在用上述方法遍历该节点的右子树,如此重复到栈空为止。
*/
void FirstOrderAccess0(BTree * header)
{
 BTree * stack[MAX_NODE];
 BTree *p;
 int top;
 top = 0;
 p = header;
 do
 {
  while(p!=NULL)
  {
   printf("BTree[%d] = %c/t",p->order,p->data);//访问节点P
   top = top+1;
   stack[top] = p;
   p = p->lchild;//继续搜索节点P的左子树
  }
  if(top!=0)
  {
   p = stack[top];
   top = top-1;
   p = p->rchild;//继续搜索节点P的右子树
  }
 }while((top!=0)||(p!=NULL));
}
/*
function FirstOrderAccess1()功能:实现二叉树的前序遍历
二叉树前序遍历的思想:
 从根节点开始,沿左子树一直走到没有左孩子的节点为止,
依次访问所经过的节点,同时所经[节点的非空右孩子]进栈;
 当找到没有左孩子的节点时,从栈顶退出该节点的双亲的
右孩子,此时,此节点的左子树已访问完毕;
 在用上述方法遍历该节点的右子树,如此重复到栈空为止。
*/
void FirstOrderAccess1(BTree * header)
{
 BTree * stack[MAX_NODE];
 BTree *p;
 int top;
 top = 0;
 p = header;
 do
 {
  while(p!=NULL)
  {
   printf("BTree[%d] = %c/t",p->order,p->data);
   if(p->rchild!=NULL)
    stack[++top] = p->rchild;
   p = p->lchild;
  }
  if(top!=0)
   p = stack[top--];
 }while((top>0)||(p!=NULL));
}

/*
function MiddleOrderAccess()功能:实现二叉树的中序遍历
二叉树中序遍历的思想:
 从根节点开始,沿左子树一直走到没有左孩子的节点为止,
并将所经[节点]的地址进栈;
 当找到没有左孩子的节点时,从栈顶退出该节点并访问它,
此时,此节点的左子树已访问完毕;
 在用上述方法遍历该节点的右子树,如此重复到栈空为止。
*/
void MiddleOrderAccess(BTree * header)
{
 BTree * stack[MAX_NODE];
 BTree *p;
 int top;
 top = 0;
 p = header;
 do
 {
  while(p!=NULL)
  {
   stack[++top] = p;//节点P进栈
   p = p->lchild;  //继续搜索其左子树
  }
  if(top!=0)
  {
   p = stack[top--];//节点P出栈
   printf("BTree[%d] = %c/t",p->order,p->data);//访问节点P
   p = p->rchild;//继续搜索其左子树
  }
 }while((top!=0)||(p!=NULL));
}

/*
function LastOrderAccess()功能:实现二叉树的后序遍历
二叉树后序遍历的思想:
 从根节点开始,沿左子树一直走到没有左孩子的节点为止,
并将所经[节点]的地址第一次进栈;
 当找到没有左孩子的节点时,此节点的左子树已访问完毕;
从栈顶退出该节点,判断该节点是否为第一次进栈,如是,再
将所经[节点]的地址第二次进栈,并沿该节点的右子树一直走到
没有右孩子的节点为止,如否,则访问该节点;此时,该节点的
左、右子树都已完全遍历,且令指针p = NULL;
 如此重复到栈空为止。
*/
void LastOrderAccess(BTree * header)
{
 BTree * stack[MAX_NODE];//节点的指针栈
 int count[MAX_NODE];//节点进栈次数数组
 BTree *p;
 int top;
 top = 0;
 p = header;
 do
 {
  while(p!=NULL)
  {
   stack[++top] = p;//节点P首次进栈
   count[top] = 0;
   p = p->lchild;   //继续搜索节点P的左子树
  }
  p = stack[top--];//节点P出栈
  if(count[top+1]==0)
  {
   stack[++top] = p;//节点P首次进栈
   count[top] = 1;
   p = p->rchild;  //继续搜索节点P的左子树
  }
  else
  {
   printf("BTree[%d] = %c/t",p->order,p->data);//访问节点P
   p = NULL;
  }
 }while((top>0));
}
/*
function IsLeafNode()功能:判断给定二叉树的节点是否是叶子节点
*/
int IsLeafNode(BTree *node)
{
 if((node->lchild==NULL)&&(node->rchild==NULL))
  return(1);
 else
  return(0);
}
/*
function PrintLeafNode()功能:输出给定二叉树的叶子节点
*/
void PrintLeafNode(BTree *header)
{
 BTree * stack[MAX_NODE];//节点的指针栈
 BTree *p;
 int top;
 p = header;
 top = 0;
 do
 {
  while(p!=NULL)
  {
   stack[++top] = p;
   p = p->lchild;//继续搜索节点P的左子树
  }
  if(top!=0)
  {
   p = stack[top--];
   if(IsLeafNode(p))
    printf("LNode[%d] = %c/t",p->order,p->data);//访问叶子节点
   p = p->rchild;//继续搜索节点P的右子树
  }
 }while(top>0||p!=NULL);
}
/*
function HasTwoChildNode()功能:判断给定二叉树的节点是否存在两个孩子节点
*/
int HasTwoChildNode(BTree *node)
{
 if((node->lchild!=NULL)&&(node->rchild!=NULL))
  return(1);
 else
  return(0);
}
/*
function SwapChildNode()功能:交换给定二叉树的所有节点的左、右孩子
*/
void SwapChildNode(BTree *header)
{
 BTree * stack[MAX_NODE];//节点的指针栈
 BTree *p;
 int top;
 p = header;
 top = 0;
 do
 {
  while(p!=NULL)
  {
   stack[++top] = p;
   p = p->lchild;//继续搜索节点P的左子树
  }
  if(top!=0)
  {
   p = stack[top--];
   if(HasTwoChildNode(p))
    Swap(&p->lchild->data,&p->rchild->data);//交换节点P的左、右孩子
   p = p->rchild;//继续搜索节点P的右子树
  }
 }while(top>0||p!=NULL); 
}


int main(int argc, char* argv[])
{
 BTree * TreeHeader;
 printf("二叉树创建数据结果:/n");
 TreeHeader = CreateBTree(TreeValue1,NODE_COUNT1-1);
 //TreeHeader = CreateBTree(TreeValue2,NODE_COUNT2-1);
 if (TreeHeader==0)
 {
  printf("二叉树创建失败!/n");
  return(0);
 }
 else
 {
  printf("/n二叉树前序遍历结果:/n");
  FirstOrderAccess1(TreeHeader);
  printf("/n二叉树中序遍历结果:/n");
  MiddleOrderAccess(TreeHeader);
  printf("/n二叉树后序遍历结果:/n");
  LastOrderAccess(TreeHeader);
  //printf("/n二叉树的所有叶子节点:/n");
  //PrintLeafNode(TreeHeader);
  //SwapChildNode(TreeHeader);
  //printf("/n二叉树交换孩子的结果:/n");
  //MiddleOrderAccess(TreeHeader);
  printf("/n程序运行完毕!/n");
  return 0;
 }
}

  

数据结构与算法(C#)--树和二叉树

3.1、树的表示方法 3.2、树的基本术语 1、结点、结点的度和树的度 结点:包含一个元素及若干指向子树的分支 结点的度:结点所拥有的子树数 树的度:树内各结点度的最大值 叶子结点:度为零的结点,...
  • sgzy001
  • sgzy001
  • 2013-12-09 23:46:30
  • 1380

关于二叉树的算法大全

最近做了许多关于二叉树的题,递归用的有点模糊的感觉,即便题是做对了,但细节可能没有完全搞清楚,故搜得一个关于二叉树的算法大全,加深自己的理解。链接如下: 二叉树算法大全...
  • phoneix_bleach
  • phoneix_bleach
  • 2016-08-16 19:27:22
  • 163

数据结构编程笔记十五:第六章 树和二叉树 树和二叉树的转换算法实现

上次已经介绍了递归算法以及二叉树的基本操作,最重要的就是二叉树的遍历算法。这次主要是介绍树的孩子兄弟表示法以及树和二叉树的转换。还是老规矩:程序在码云上可以下载。 地址:https://git.o...
  • u014576141
  • u014576141
  • 2017-08-24 16:57:32
  • 577

树、森林及二叉树的相互转换 – 数据结构和算法50

树、森林及二叉树的相互转换   让编程改变世界 Change the world by program   树、森林及二叉树的相互转换   从一个屌丝逆袭...
  • Andy2016
  • Andy2016
  • 2015-11-19 14:30:22
  • 975

普通树转化成二叉树

普通树转化成二叉树。
  • sddxqlrjxr
  • sddxqlrjxr
  • 2016-04-04 21:11:25
  • 3361

有关二叉树的计算题和知识

1.二叉树的深度和层数其实是一样的。 2.任意一棵树的总结点数等于总分支数+1 3.叶子结点也称叶子,度为0的结点。 相关题目: 1.      一棵二叉树第六层(根结点为第一层)的结点数最多...
  • bojie5744
  • bojie5744
  • 2014-06-14 16:00:31
  • 2885

多叉树 转换为二叉树 算法

多叉树转换为二叉树算法。算法描述:将多叉树的第一个儿子结点作为二叉树的左结点,将其兄弟结点作为二叉树的右结点。 举例,如下图: 树的结构为: typedef struct BinaryTre...
  • jasonkent27
  • jasonkent27
  • 2014-09-23 00:03:43
  • 733

树---关于二叉树的三个小算法

package com.Tree; /* * 这个类包含三个有关二叉树操作的小算法 * 1.计算某一结点所在层次 * 2.交换二叉树所有结点的左右子树位置 * 3.删除二叉树以某一结点...
  • agfagafsdfas
  • agfagafsdfas
  • 2014-11-03 23:32:44
  • 339

如何把普通树转为二叉树?为什么?

树,二叉链表,二叉树的存储
  • Amethyst128
  • Amethyst128
  • 2017-06-30 14:53:11
  • 1081
收藏助手
不良信息举报
您举报文章:转 关于二叉树的算法
举报原因:
原因补充:

(最多只允许输入30个字)