《新理解矩阵5》:体积=行列式

原文链接:http://spaces.ac.cn/index.php/archives/2208/


在文章《新理解矩阵3》:行列式的点滴中,笔者首次谈及到了行列式的几何意义,它代表了n维的“平行多面体”的“体积”。然而,这篇文章写于我初学矩阵之时,有些论述并不严谨,甚至有些错误。最近笔者在写期末论文的时候,研究了超复数的相关内容,而行列式的几何意义在我的超复数研究中具有重要作用,因此把行列式的几何意义重新研究了一翻,修正了部分错误,故发此文,与大家分享。

一个 n 阶矩阵 A 可以看成是 n n 维列向量 x1,x2,...,xn 的集合

A=(x1,x2,,xn)

从代数的角度来看,这构成了一个矩阵;从几何的角度来看,这 n 个向量可以建立一个平行 n 维体。比如:平行四边形就是“平行二维体”,平行六面体就是“平行三维体”,高阶的只需要相应类比,不需要真正想象出高维空间的立体是什么样。

让我们考虑矩阵 A 的行列式 detA ,我们知道 detA 有如下性质:

行列式性质

1、行列式是 x1,x2,,xn 的一个函数,即 detA=f(x1,x2,,xn)

2、(线性1)行列式的某一列乘上常数 α ,则行列式的值也乘上 α ,即 f(x1,,αxi,,xn)=αf(x1,,xi,,xn)

3、(线性2)将行列式的某一列写成两列之和,那么行列式也相应地成为两个行列式之和,即 f(x1,,αxi,,xn)=f(x1,,yi,,xn)+f(x1,,zi,,xn) ,其中 xi=yi+zi ,性质二和三表明 f 是关于每个向量的线性函数;

4、(反对称)只要有两列相同,那么行列式值为0,即 f(,x,,x,)=0

5、(归一)单位矩阵的行列式为1,即 f(I)=1


一个惊人的事实是,行列式可以由上面五条性质唯一确定!即由上面五条性质就可以唯一确定一个函数 f ,这个函数就是矩阵的行列式。

从几何的角度来看,用这 n 个向量,可以生成 n 维空间的一个平行 n 维体。让我们来考虑这个平行 n 维体的体积 V 。只在第一卦限讨论,那么体积具有下面的性质(只在第一卦限讨论,限保证了所有的向量和因子都是正数。)

体积性质

1、体积是这 n 个向量的一个函数 V(x1,x2,,xn)

2、将某个向量乘以 α ,也就是把它的长度变为来说的 α 倍,那么体积也增大 α 倍,即 V(x1,,αxi,,xn)=αV(x1,,xi,,xn)

3、体积是可加的,即 V(x1,,αxi,,xn)=V(x1,,yi,,xn)+V(x1,,zi,,xn) ,其中 xi=yi+zi ;这点需要稍加验证,但它的确是正确的。

4、只要有两个向量重合,那么体积自然为0,即 V(,x,,x,)=0 ;比如在三维空间中的一个立体,有两条边重合,那么说明这个立体已经压缩为一个面了,面的体积自然为0。

5、由单位矩阵 I 构成的平行 n 维体是一个 n 维的单位立方体,它的体积自然是1,即 V(I)=1

比较行列式和体积的性质,可以发现它们是完全相同的,所以在第一卦限中的平行 n 维体的体积就是对应矩阵的行列式!如果将其放到所有卦限中,那只不过是体积概念的推广(允许为负数)。因此,我们不妨这样定义:体积就是行列式

事实上,负体积的引入具有重要意义,它是现在的“外微分”的基础之一。外微分一个典型的用处是它可以把高斯积分公式、斯托克斯积分公式等统一起来。它使微分的理论和形式更完整统一。


  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值