[CodeForces - 712D]Memory and Scores (DP 或者 生成函数)

题目大意:

两个人玩取数游戏,第一个人分数一开始是a,第二个分数一开始是b,接下来t轮,每轮两人都选择一个[-k,k]范围内的整数,加到自己的分数里,求有多少种情况使得t轮结束后a的分数比b高。  (1 ≤ a, b ≤ 100, 1 ≤ k ≤ 1000, 1 ≤ t ≤ 100)

 

1.我一开始的想法是DP出玩i轮得分是j的方案数。然后状态数最多有t*(2*k*t)那么多,最坏情况下会有2e7那么多的状态,转移必须是O(1)的。

dp[i][j]=sum(dp[i-1][j-k....j+k])用个前缀和维护即可。 最后求答案的时候傻逼了,觉得必须枚举最后两人的得分,就放弃了这个做法。后来看了别人的题解,其实只要枚举第一个人的最后得分,那么第二个人可行的得分是连续的一段区间,也可以用前缀和来优化。    以上记为方法一。  时间复杂度O(k*t2)

2.方法二:一个重要的转化,原题等价于一个人一开始得分是a-b,然后玩2*t轮,最后得分要求大于0的方案数。  然后就和方法一一样了。

3.方法三:利用生成函数。观察可知  $(\frac{1+x+x^2+x^3+\cdots+x^{2k}}{x^k})^{2t}$次数大于0的项的系数和即为答案。 我们只要求出分子$(1+x+x^2+x^3+\cdots+x^{2k})^{2t}$的所有次数大于$2kt$的项的系数和即可。

我们可以把分子变形:

\begin{equation}
\begin{array}{rcl}
  (1+x+x^2+x^3+\cdots+x^{2k})^{2t}&=&(1-x^{2k+1})^{2t}(\frac{1}{1-x})^{2t}\\
                      &=&\sum_{i=0}^{2t}C_{_{2t}}^{^i}(-1)^{i}x^{(2k+1)i} \sum_{j=0}^{\infty}C_{_{2t-1+j}}^{^{2t-1}}\ \ \ \ x^j
  \end{array}
\end{equation}

 
我们可以枚举前面一个和式中的i,然后确定j的范围。 注意j其实是有上界的,因为分析可知这个式子的最高次数是$4kt$次。
因此$0<(2k+1)i+j<=4kt$  解出j的范围是连续的,可以利用组合数的性质合并。 时间复杂度可以做到O(kt)

(1+x+x2++x2k)2t=(1x2k+11x)2t=(1x2k+1)2t×1(1x)2t=(1x2k+1)2t×(1+x+x2+x3+x4+)2t

转载于:https://www.cnblogs.com/vb4896/p/5871349.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值