给定26种任务,每种任务的数量已知。
相同任务之间必须间隔n个时间段,为了不足n个时间段,可以让及其休息。
问:最少需要多长时间才能处理完这些任务?
这道题用贪心策略解决:每次安排任务时,优先安排任务数比较多的。
实现上,按照批次执行任务,n+1作为一个任务周期。执行完每批任务之后,根据每个任务的数量对当前任务进行排序。
需要注意细节:最后一批任务是不需要加上休息时间的。
class Solution:
def leastInterval(self, tasks, n):
def all0(a): # 全为0
for i in a:
if i != 0:
return False
return True
if not tasks: return 0
ma = {}
for i in tasks:
if i not in ma:
ma[i] = 0
ma[i] += 1
a = sorted(ma.values(), key=lambda x: -x)
if n == 0: return sum(a)
ans = 0
while 1:
for i in range(min(len(a), n + 1)):
a[i] -= 1
if all0(a):#如果全为0,那就肯定不需要休息了
ans += len(a)
return ans
ans += (n + 1)
#重新排序
a = sorted(a, key=lambda x: -x)
na = []
for i in a:
if i:
na.append(i)
else:
break
a = na