hihocoder第233周

题目链接

题目描述

给定一个数组a[N],N小于1e5。把数组划分成若干个片段,每个片段的和都不为0,问有多少种划分方法?

方法描述

定义f(i)表示0~i共有多少种划分方式,则$f(j)=\sum_{i\in[0,j) and sum(a[i+1:j]) \ne 0} f(i)$
相当于统计$f(j)=\sum_{i \in [0,j)} f(i)-\sum_{i \in [0,j) and sum(a[i+1:j])==0} f(i)$。对于此式第二项可以使用map记录下来,满足sum(a[i+1:j])的那些i,必定满足prefix[i]==prefix[j],prefix[i]表示前缀和,即0~i之间全部元素之和。

#include<iostream>
#include<stdio.h>
#include<map> 
using namespace std; 
typedef long long ll;
const int maxn = 1e9 + 7;
const int maxcount = 1e5 + 3;
const int maxvalue = 103; 
int n;
int a[maxcount];
int pre[maxcount];
map<int, int>ma; 
int main() {
    freopen("in.txt", "r", stdin);
    cin >> n;
    for (int i = 0; i < n; i++)scanf("%d", a + i+1); 
    pre[0]=a[0] = 0;
    ma[0] = 1;
    for (int i = 1; i <= n; i++)pre[i] = pre[i - 1] + a[i];  
    ll s = 1;
    ll now = 0;
    for (int i=1; i <= n; i++) {  
        now = (s- ma[pre[i]]+maxn)%maxn;  
        s = (s + now) % maxn; 
        if (ma.count(pre[i]) == 0)ma[pre[i]] = 0;
        ma[pre[i]] = (ma[pre[i]]+now)%maxn;
    } 
    cout << now<< endl;
    return 0;
}

转载于:https://www.cnblogs.com/weiyinfu/p/10125574.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值