就着官方的题解给出答案把
重要是理解里边的map集合和哈希的方法使用
看一下这篇文章就会理解,我认为只有他的普通版稍微不好理解,然后下边哪个更好理解
第一种
由于同一个数字在两个数组中都可能出现多次,因此需要用哈希表存储每个数字出现的次数。对于一个数字,其在交集中出现的次数等于该数字在两个数组中出现次数的最小值。
首先遍历第一个数组,并在哈希表中记录第一个数组中的每个数字以及对应出现的次数,然后遍历第二个数组,对于第二个数组中的每个数字,如果在哈希表中存在这个数字,则将该数字添加到答案,并减少哈希表中该数字出现的次数。
为了降低空间复杂度,首先遍历较短的数组并在哈希表中记录每个数字以及对应出现的次数,然后遍历较长的数组得到交集。
比较不好理解的是中间那块,那里的map就已经变成了从第一轮筛选过后的map,它的map里已经有了数组,拿第二个数组里的数值和map里对比。
class Solution {
public int[] intersect(int[] nums1, int[] nums2) {
if (nums1.length > nums2.length) {
return intersect(nums2, nums1);
}
Map<Integer, Integer> map = new HashMap<Integer, Integer>();
for (int num : nums1) {
int count = map.getOrDefault(num, 0) + 1;
map.put(num, count);
}
int[] intersection = new int[nums1.length];
int index = 0;
for (int num : nums2) {
int count = map.getOrDefault(num, 0);
if (count > 0) {
intersection[index++] = num;
count--;
if (count > 0) {
map.put(num, count);
} else {
map.remove(num);
}
}
}
return Arrays.copyOfRange(intersection, 0, index);
}
}
复杂度分析
时间复杂度:O(m+n)O(m+n),其中 mm 和 nn 分别是两个数组的长度。需要遍历两个数组并对哈希表进行操作,哈希表操作的时间复杂度是 O(1)O(1),因此总时间复杂度与两个数组的长度和呈线性关系。
空间复杂度:O(\min(m,n))O(min(m,n)),其中 mm 和 nn 分别是两个数组的长度。对较短的数组进行哈希表的操作,哈希表的大小不会超过较短的数组的长度。为返回值创建一个数组 intersection,其长度为较短的数组的长度。
第二种方法就很好理解了,这个方法就是同步进行
方法二:排序 + 双指针
如果两个数组是有序的,则可以使用双指针的方法得到两个数组的交集。
首先对两个数组进行排序,然后使用两个指针遍历两个数组。
初始时,两个指针分别指向两个数组的头部。每次比较两个指针指向的两个数组中的数字,如果两个数字不相等,则将指向较小数字的指针右移一位,如果两个数字相等,将该数字添加到答案,并将两个指针都右移一位。当至少有一个指针超出数组范围时,遍历结束。
class Solution {
public int[] intersect(int[] nums1, int[] nums2) {
Arrays.sort(nums1);
Arrays.sort(nums2);
int length1 = nums1.length, length2 = nums2.length;
int[] intersection = new int[Math.min(length1, length2)];
int index1 = 0, index2 = 0, index = 0;
while (index1 < length1 && index2 < length2) {
if (nums1[index1] < nums2[index2]) {
index1++;
} else if (nums1[index1] > nums2[index2]) {
index2++;
} else {
intersection[index] = nums1[index1];
index1++;
index2++;
index++;
}
}
return Arrays.copyOfRange(intersection, 0, index);
}
}