8.18爆炸记

T1

改造二叉树

Description

在计算机科学中,二叉树是每个结点最多有两个子结点的有序树。通常子结点被称作“左孩子”和“右孩子”。二叉树常被用作二叉搜索树和二叉堆。
  我们再讨论二叉搜索树。什么是二叉搜索树呢?二叉搜索树首先是一棵二叉树。设key[p]表示结点p上的数值,对于其中的每个结点p,若其存在左孩子lch,则key[p] > key[lch];若其存在右孩子rch,则key[p] < key[rch]。注意,应该是所有左子树中的key小于当前key,所有右子树中的key大于当前key。
  对于每个结点,无论如何改变其数值(整数),费用总等于1。
  现在给定一棵二叉树,可以任意修改结点的数值。要求用最小的费用将其变成一棵二叉搜索树。

Input

  输入文件bst.in包括两行,第一行是一个整数n,表示二叉树的结点数。
  第二行包含n个整数,用空格分隔,第i个整数ai是第i个结点的原始数值。
  此后n-1行每行两个整数,第i行描述编号为i-1的结点的父亲编号以及父子关系(0表示为左孩子,1表示为右孩子)。编号为1的结点一定是二叉树的根。

Output

 输出文件bst.out包括一行,这一行只包含一个整数,也就是最小的费用值。输入数据保证这个值小于2^31。

Sample Input

3 
2 2 2
1 0
1 1

Sample Output

2

Hint

【数据范围】
  对于50%的数据,保证n<=100且0<=ai<=200;
  对于100%的数据,保证n<=100000;

二叉查找树的中序遍历具有一个优秀的性质,那就是严格递增。对于当前树,我们可以处理出它的中序遍历,问题就变为了:求最少在中序遍历中修改几个数,使它严格递增。

我们自然会想到求出它的最长上升子序列,并用n减去它的长度就是答案。但如何保证严格递增呢?常见的一个thick就是把每个数减去当前数的下标,但值得注意的是:此时求的就是最长不降子序列的长度了。

因为n≤105,故要用二分优化。

#include<iostream>
#include<iomanip>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std; #define INF 0x7fffffff inline int read() { char ch; bool bj=0; while(!isdigit(ch=getchar())) bj|=(ch=='-'); int res=ch^(3<<4); while(isdigit(ch=getchar())) res=(res<<1)+(res<<3)+(ch^(3<<4)); return bj?-res:res; } void printnum(int x) { if(x>9)printnum(x/10); putchar(x%10+'0'); } inline void print(int x,char ch) { if(x<0) { putchar('-'); x=-x; } printnum(x); putchar(ch); } int n,a[200005],c[200005][2]; int d[200005],Mid[200005],tot; void DFS(int x) { if(c[x][0])DFS(c[x][0]); Mid[++tot]=a[x]; if(c[x][1])DFS(c[x][1]); } int Half_LIS() { int len=1; d[1]=Mid[1]; for(int i=2; i<=n; i++) { int l=1,r=len; if(d[len]<=Mid[i]) { len++; d[len]=Mid[i]; continue; } while(l<=r) { int mid=(l+r)>>1; if(d[mid]<=Mid[i])l=mid+1; else r=mid-1; } d[l]=Mid[i]; } return len; } signed main() { n=read(); for(int i=1; i<=n; i++)a[i]=read(); int x,y; for(int i=2; i<=n; i++) { x=read(); y=read(); c[x][y]=i; } DFS(1); for(int i=1; i<=n; i++)Mid[i]-=i; cout<<n-Half_LIS()<<endl; return 0; }

T2

数字对

Description

 小H是个善于思考的学生,现在她又在思考一个有关序列的问题。
  她的面前浮现出一个长度为n的序列{ai},她想找出一段区间[L, R](1 <= L <= R <= n)。
  这个特殊区间满足,存在一个k(L <= k <= R),并且对于任意的i(L <= i <= R),ai都能被ak整除。这样的一个特殊区间 [L, R]价值为R - L。
  小H想知道序列中所有特殊区间的最大价值是多少,而有多少个这样的区间呢?这些区间又分别是哪些呢?你能帮助她吧。

Input

  第一行,一个整数n.
  第二行,n个整数,代表ai.

Output

  第一行两个整数,num和val,表示价值最大的特殊区间的个数以及最大价值。
  第二行num个整数,按升序输出每个价值最大的特殊区间的L.

Sample Input

【样例输入1】
5
4 6 9 3 6

【样例输出1】
1 3
2

Sample Output

【样例输入2】
5
2 3 5 7 11

【样例输出2】
5 0
1 2 3 4 5

Hint

【数据范围】
  30%: 1 <= n <= 30 , 1 <= ai <= 32.
  60%: 1 <= n <= 3000 , 1 <= ai <= 1024.
  80%: 1 <= n <= 300000 , 1 <= ai <= 1048576.
  100%: 1 <= n <= 500000 , 1 <= ai < 2 ^ 31.

 

30pts:暴力,枚举每个区间,暴力扫。

60pts:ST表预处理区间最小和区间gcd,显然成为特殊区间的条件就是区间最小和区间gcd相等,枚举每个区间,O(1)算(笔者没算gcd的复杂度)

100pts:是否可以二分?如果我们二分点i向右延伸的长度的话,这个答案是不具有单调性的。但是如果二分最大价值就可以,设当前二分的答案是mid,O(n)暴力判一遍[i,i+mid]所有区间是否为特殊区间,求答案的最大值即可

不用ST表用线段树的话会T飞,同桌亲测与暴力分一样。推荐遇到静态问题或多次查询的题都用ST表。

 

#include<iostream>
#include<iomanip>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath> #include<map> using namespace std; #define INF 0x3f3f3f3f #define int long long inline int read() { char ch; bool bj=0; while(!isdigit(ch=getchar())) bj|=(ch=='-'); int res=ch^(3<<4); while(isdigit(ch=getchar())) res=(res<<1)+(res<<3)+(ch^(3<<4)); return bj?-res:res; } void printnum(int x) { if(x>9)printnum(x/10); putchar(x%10+'0'); } inline void print(int x,char ch) { if(x<0) { putchar('-'); x=-x; } printnum(x); putchar(ch); } int p[500005][25],a[500005],n,log_2[500005],minn[500005][25]; int maxn=-INF; int tot,ans[500005]; int gcd(int x,int y) { return y?gcd(y,x%y):x; } inline void ST() { for(int j=1; j<=log_2[n]; j++) for(int i=1; i<=n; i++) if(i+(1<<j)-1<=n) { p[i][j]=gcd(p[i][j-1],p[i+(1<<(j-1))][j-1]); minn[i][j]=min(minn[i][j-1],minn[i+(1<<(j-1))][j-1]); } } inline int check(int x,int y) { int k=log_2[y-x+1]; return gcd(p[x][k],p[y-(1<<k)+1][k])==min(minn[x][k],minn[y-(1<<k)+1][k]); } inline void Solve(int x) { for(int i=1; i<=n; i++) if(i+x<=n&&check(i,i+x)) ans[++tot]=i; } signed main() { n=read(); for(int i=2; i<=n; i++)log_2[i]=log_2[i>>1]+1; for(int i=1; i<=n; i++) { a[i]=read(); p[i][0]=minn[i][0]=a[i]; } ST(); int l=0,r=n; while(l<=r) { int mid=(l+r)>>1; tot=0; Solve(mid); if(tot) { maxn=mid; ans[0]=tot; l=mid+1; } else r=mid-1; } print(ans[0],' '); print(maxn,'\n'); for(int i=1; i<=ans[0]; i++)print(ans[i],' '); return 0; }

 

T3

交换

Description

给定一个{0, 1, 2, 3, … , n - 1}的排列 p。一个{0, 1, 2 , … , n - 2}的排列q被认为是优美的排列,当且仅当q满足下列条件:
对排列s = {0, 1, 2, 3, ..., n - 1}进行n – 1次交换。
1.交换s[q0],s[q0 + 1]
2.交换s[q1],s[q1 + 1]
…
最后能使得排列s = p.
问有多少个优美的排列,答案对10^9+7取模。

 Input

第一行一个正整数n.
第二行n个整数代表排列p.

Output

仅一行表示答案。

Sample Input

3
1 2 0

Sample Output

【样例输出】
1

Hint

【样例解释】
q = {0,1} {0,1,2} ->{1,0,2} -> {1, 2, 0}
q = {1,0} {0,1,2} ->{0,2,1} -> {2, 0, 1}
【数据范围】
30%: n <= 10
100%: n <= 50

30pts:q的全排列,暴力交换判断。

100pts:考虑把操作反过来,即p序列交换为s序列,不影响答案

枚举交换的分界点i和i+1,若对于[1,i]的所有元素都在[0,i-1]的范围内,且[i+1,n]的所有元素都在[i,n-1]的范围内,则可以分成两个子问题,递归求解。

eg: 设序列p={1,2,0,4,3,5},交换元素0和4是左右是满足子问题结构的,交换3和5同理。

每次递归子问题会返回左边的方案数f1和右边的方案数f2,根据乘法原理,当前方案数f=f1×f2。

Is it all?显然不是的,因为左右两区间不相交,所以左右两边的交换不影响,但是在计数中算两种方案,所以我们还需考虑交换的时间顺序。

设当前区间为[l,r],分界点i,总交换次数是r-l,交换了i和i+1后剩r-l-1次。左边的区间是[l,i],共i-l+1个数,有i-l次交换;右边的区间是[i+1,r],共r-i个数,有r-i-1次交换。

显然确定了前一半,后一半也随之确定,所以只需要在r-l-1中选i-l(或r-i-1)次就行了,即C(r-l-1,i-l)

设f[l][r]为(l,r)区间的方案数

f[l][r]=DFS(l,i)×DFS(i+1,r)×C(r-l-1,i-l)

没了,加个记忆化。

 

#include<iostream>
#include<iomanip>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define int long long
inline int read() {
    char ch;
    bool bj=0;
    while(!isdigit(ch=getchar()))
        bj|=(ch=='-');
    int res=ch^(3<<4);
    while(isdigit(ch=getchar()))
        res=(res<<1)+(res<<3)+(ch^(3<<4));
    return bj?-res:res;
}
void printnum(int x) {
    if(x>9)printnum(x/10);
    putchar(x%10+'0');
}
inline void print(int x,char ch) {
    if(x<0) {
        putchar('-');
        x=-x;
    }
    printnum(x);
    putchar(ch);
}
const int Mod=1e9+7;
int p[55],f[55][55],n,c[55][55];
int DFS(int l,int r) {
    if(l==r)return f[l][r]=1;
    if(~f[l][r])return f[l][r];
    f[l][r]=0;
    for(int i=l; i<r; i++) {
        int bj=1;
        swap(p[i],p[i+1]);
        for(int j=l; j<=i; j++)
            if(p[j]<l||p[j]>i) {
                bj=0;
                break;
            }
        for(int j=i+1; j<=r; j++)
            if(p[j]<i+1||p[j]>r) {
                bj=0;
                break;
            }
        if(bj)f[l][r]=(f[l][r]+DFS(l,i)*DFS(i+1,r)%Mod*c[r-l-1][i-l]%Mod)%Mod;
        swap(p[i],p[i+1]);
    }
    return f[l][r];
}
signed main() {
    n=read();
    for(int i=1; i<=n; i++)p[i]=read()+1;
    memset(f,-1,sizeof(f));
    for(int i=0; i<=n; i++) {
        c[i][0]=1;
        for(int j=1; j<=i; j++)
            c[i][j]=(c[i-1][j-1]+c[i-1][j])%Mod;
    }
    print(DFS(1,n),'\n');
    return 0;
}

 

得分10(100)+60(60)+30(30)=100(190)

OI尚未结束,蒟蒻仍需努力

 

转载于:https://www.cnblogs.com/soledadstar/p/11373766.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值