Codeforces Round 72 (Rated for Div. 2) D

 
D. Coloring Edges
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given a directed graph with nn vertices and mm directed edges without self-loops or multiple edges.

Let's denote the kk-coloring of a digraph as following: you color each edge in one of kk colors. The kk-coloring is good if and only if there no cycle formed by edges of same color.

Find a good kk-coloring of given digraph with minimum possible kk.

Input

The first line contains two integers nn and mm (2n50002≤n≤5000, 1m50001≤m≤5000) — the number of vertices and edges in the digraph, respectively.

Next mm lines contain description of edges — one per line. Each edge is a pair of integers uu and vv (1u,vn1≤u,v≤n, uvu≠v) — there is directed edge from uu to vv in the graph.

It is guaranteed that each ordered pair (u,v)(u,v) appears in the list of edges at most once.

Output

In the first line print single integer kk — the number of used colors in a good kk-coloring of given graph.

In the second line print mm integers c1,c2,,cmc1,c2,…,cm (1cik1≤ci≤k), where cici is a color of the ii-th edge (in order as they are given in the input).

If there are multiple answers print any of them (you still have to minimize kk).

 

题目大意:

有一个有向图,可以用K种颜色为每条边涂色,要求强联通分量中的边不能全是同一颜色,求最小的颜色数K和每条边允许的颜色(符合情况即可)。

 

思路:首先,K的值肯定不会超过2,因为两种颜色就可以把所有图画出。所以当图没有强联通分量时,K=1。有强联通分量时,K=2,然后按时间戳涂色即可。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<vector>
using namespace std;
const int MAXN=5050;
vector <int> vec[MAXN];
int vis1[MAXN],vis2[MAXN];
int dfn[MAXN];
int X[MAXN],Y[MAXN];
int cnt,n,m;
int x,y;
int flag=0;
void dfs(int rt)
{
    vis1[rt]=1;//将此点标记,但此点与后面的点并未搜完
    dfn[rt]=++cnt;
    int l=vec[rt].size();
    for(int i=0;i<l;i++)
    {
        int v=vec[rt][i];
        if(vis2[v])//后面的点已搜过
            continue;
        if(vis1[v])//在搜索时形成强联通分量.
            flag=1;
        else
            dfs(v);
    }
    vis2[rt]=1;//此点与后面可以搜到的所有点全部搜完
}
int main()
{
    cnt=0;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++)
    {
        scanf("%d%d",&x,&y);
        vec[x].push_back(y);
        X[i]=x;
        Y[i]=y;
    }
    for(int i=1;i<=n;i++)
    {
        if(!vis1[i])
            dfs(i);
    }
    if(!flag)
    {
        cout<<1<<endl;
        for(int i=1;i<=m;i++)
        {
            printf("1%c",i==m?'\n':' ');
        }
        return 0;
    }
    cout<<2<<endl;
    for(int i=1;i<=m;i++)
    {
        if(dfn[X[i]]<dfn[Y[i]])
            printf("1%c",i==m?'\n':' ');
        else
            printf("2%c",i==m?'\n':' ');
    }
}
View Code

 

 

转载于:https://www.cnblogs.com/switch-waht/p/11480043.html

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值