如何利用全新的决策树集成级联结构gcForest做特征工程并打分?

640?wx_fmt=gif

向AI转型的程序员都关注了这个号👇👇👇

机器学习AI算法工程  公众号: datayx

深度学习最大的贡献,个人认为就是表征学习(representation learning),通过端到端的训练,发现更好的features,而后面用于分类(或其他任务)的输出function,往往也只是普通的softmax(或者其他一些经典而又简单的方法)而已,所以,只要特征足够好,分类函数本身并不需要复杂——博主自己在做research的时候也深有同感,以前很多paper其实是误入歧途,采用的feature非常混淆模糊没有区分性,却指望在分类器上获得好的结果,可能么?深度学习可以说是回到了问题的本源上来,representation learning。

完整源码下载地址:

关注微信公众号 datayx  然后回复 gc 即可获取。

640?wx_fmt=png

级联森林结构的图示。级联的每个级别包括两个随机森林(蓝色字体标出)和两个完全随机树木森林(黑色)。假设有三个类要预测; 因此,每个森林将输出三维类向量,然后将其连接以重新表示原始输入。注意,要将前一级的特征和这一级的特征连接在一起——在最后会有一个例子,到时候再具体看一下如何连接。

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

总结


如何利用gcForest为特征打分?

这个算法的确比传统的集成树算法:RandomForest,XGBoost,lightGBM都要优秀,而且引入层的概念后很好的解决了集成树算法容易过拟合的问题。

640?wx_fmt=png

通过对RandomForest,XGBoost打分函数的学习,我和小伙伴shi.chao 对gcForest封装了一个特征打分方法,利用的还是源码里手写数字识别的数据,每层只有RandomForest,XGBoost,为了方便调试,就构建了两层。

https://blog.csdn.net/xbinworld/article/details/60466552

https://blog.csdn.net/phyllisyuell/article/details/85258877


阅读过本文的人还看了以下:

不断更新资源

深度学习、机器学习、数据分析、python

 搜索公众号添加: datayx  

640?wx_fmt=jpeg

长按图片,识别二维码,点关注

640?wx_fmt=png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值