OCR+AI双引擎驱动:手把手教学构建智能财报分析系统

图片

向AI转型的程序员都关注公众号 机器学习AI算法工程

在金融行业中,财报分析是帮助企业和投资者做出决策的关键环节。随着科技的快速发展,自动化、智能化的财报分析变得越来越重要。传统的人工财报分析不仅费时费力,而且容易受到人为错误的影响,因此企业急需借助先进的技术来提高效率和准确性。TextIn平台与DeepSeek R1 API 的结合,提供了一种高效、智能的财报分析解决方案,极大地提高了财报处理的自动化水平,助力企业做出精准决策。

一、TextIn的精准文档OCR解析技术

1. TextIn平台介绍

TextIn平台是一款基于OCR(光学字符识别)技术的智能文档解析工具,能够高效提取文档中的结构化数据。特别是在财报分析中,TextIn的OCR技术能够精准识别财务报表中的表格和文本,并将其转换为可处理的Markdown格式。这样,企业不仅可以避免人工输入带来的错误,还可以大大提升财报处理的速度和准确性。

2. 王牌功能:通用文档解析

TextIn的通用文档解析功能,特别适用于PDF格式的财报文件,通过高度优化的算法,它可以高效地从扫描的财务报表中提取关键信息。其主要特点包括:

高精度OCR识别:TextIn能够准确识别PDF中的文本内容和表格数据,避免手动录入的繁琐。

结构化数据输出:解析后,TextIn将财报中的表格和数据转化为结构化的Markdown格式,便于进一步处理和分析。

3. API调用通用文档解析接口

我们可以访问合合信息的控制台免费开通API的调用权限。首次开通有1000页额度赠送!

然后我们去通用文档解析的API调试窗口进行调试。

上传测试文件,得到返回结果。

通过通用文档解析功能,TextIn为财务数据的自动提取和后续处理提供了坚实的基础。

欢迎体验文档解析

https://cc.co/16YSQ3

二、DeepSeek R1:深度AI分析财务数据

在获取财务数据后,下一步便是进行智能化分析。这正是DeepSeek R1的强项,作为一款基于AI的财务分析工具,DeepSeek能够基于提取的数据自动进行深度分析,识别出财务报表中的关键风险、亮点和估值建议,帮助决策者做出明智的选择。

1. 获取DeepSeek-API的调用凭证

首先,我们要注册DeepSeek,注册完成后,进入API keys控制台创建token。

复制保存API Key

2. 通过API调用DeepSeek大模型

编写Python代码测试调用。

from openai import OpenAIclient = OpenAI(api_key="<DeepSeek API Key>", base_url="https://api.deepseek.com")
# Round 1messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]response = client.chat.completions.create(    model="deepseek-reasoner",    messages=messages)
reasoning_content = response.choices[0].message.reasoning_contentcontent = response.choices[0].message.content
# Round 2messages.append({'role': 'assistant', 'content': content})messages.append({'role': 'user', 'content': "How many Rs are there in the word 'strawberry'?"})response = client.chat.completions.create(    model="deepseek-reasoner",    messages=messages)# ...

DeepSeek R1通过与合合信息TextIn平台的结合,能够全面处理从财报中提取出来的数据,并生成详细的分析报告。这些报告不仅涵盖了财务风险、业务增长亮点,还提供了估值建议,为投资决策提供了重要参考。

三、TextIn API结合DeepSeek R1的实践用例

1. 文档上传与处理

合合信息TextIn通过其强大的OCR技术,将上传的财务报表(通常为PDF格式)进行识别。用户只需上传财报文件,TextIn会自动将其中的文本和表格数据提取出来,并以Markdown格式输出。此时,财务数据已经被转化为结构化的信息,为后续分析做好了准备。

# 接收文件并保存file = request.files.get('file')if not file or not file.filename.lower().endswith('.pdf'):    return jsonify(error="请选择正确的PDF文件"), 400filename = secure_filename(file.filename)filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)file.save(filepath)
2. 财务数据解析与提取

通过调用合合信息TextIn的接口,系统将PDF文件转化为Markdown格式。这个过程将财报中的表格、数据等信息结构化,便于后续分析。

# 调用合合信息TextIn接口进行PDF解析resp = textin_client.recognize_pdf2md(filepath, {    'page_start': 0,    'page_count': 1000,  # 设置解析页数为1000页    'table_flavor': 'md',    'parse_mode': 'scan',  # 设置解析模式为scan模式    'page_details': 0,  # 不包含页面细节    'markdown_details': 1,    'apply_document_tree': 1,    'dpi': 144  # 分辨率设置为144 dpi})financial_data = json.loads(resp.text)['result']['markdown']

3. 财务数据分析与报告生成

一旦数据被成功提取,DeepSeek R1将分析这些数据,并生成详细的财务分析报告。DeepSeek R1不仅仅是一个简单的数据计算工具,它还运用深度学习技术对数据进行上下文分析,识别潜在的财务风险、突出增长亮点和给出估值建议。

# 使用DeepSeek进行AI分析analysis = deepseek_client.analyze_financials(financial_data)

通过AI分析,DeepSeek R1返回了一份内容丰富、结构清晰的报告,分析报告以Markdown格式展示财务风险、增长亮点和估值建议等内容。

# 结构化分析结果html_content = convert_markdown_to_html(analysis)

4. 结果展示

生成的分析报告将展示给用户,帮助他们快速了解财报的关键信息。报告中包括:

风险点:DeepSeek R1会自动标记出财报中的主要风险,帮助决策者识别潜在问题。

增长亮点:在报告中突出财务数据中的增长亮点,帮助企业发现未来的业务机会。

估值建议:DeepSeek还会根据财报数据给出估值建议,帮助投资者评估企业的市场价值

<!-- 渲染财报分析结果 --><div id="analysisResult">    <h3>🚨 三大核心风险点</h3>    <ol>    <li>    <p><strong>净利润增速放缓</strong><br>    第三季度归母净利润同比下降3.84%(扣非后-7.84%),与营收增长(+19.48%)背离,显示成本压力(研发、销售费用激增)或市场竞争加剧。</p>    </li>        <!-- ... -->    </ol>    <hr>    <h3>💡 三大增长亮点</h3>    <ol>        <!-- ... -->    </ol>    <hr>    <h3>📈 估值建议</h3>    <ol>        <!-- ... -->    </ol></div>

四、完整案例

1. 案例完整代码
① app.py
# -*- coding: utf-8 -*-
# app.pyfrom flask import Flask, render_template, request, jsonifyimport osimport jsonfrom werkzeug.utils import secure_filenameimport requestsimport pandas as pdfrom openai import OpenAIimport loggingfrom datetime import datetimeimport markdownimport re
def get_file_content(filePath):    with open(filePath, 'rb') as fp:        return fp.read()
class TextinOcr(object):    def __init__(self, app_id, app_secret):        self._app_id = app_id        self._app_secret = app_secret        self.host = 'https://api.textin.com'
    def recognize_pdf2md(self, image_path, options, is_url=False):        """        pdf to markdown        :param options: request params        :param image_path: string        :param is_url: bool        :return: response        options = {            'pdf_pwd': None,            'dpi': 144,  # 设置dpi为144            'page_start': 0,            'page_count': 1000,  # 设置解析的页数为1000页            'apply_document_tree': 0,            'markdown_details': 1,            'page_details': 0,  # 不包含页面细节信息            'table_flavor': 'md',            'get_image': 'none',            'parse_mode': 'scan',  # 解析模式设为scan        }        """        url = self.host + '/ai/service/v1/pdf_to_markdown'        headers = {            'x-ti-app-id': self._app_id,            'x-ti-secret-code': self._app_secret        }        if is_url:            image = image_path            headers['Content-Type'] = 'text/plain'        else:            image = get_file_content(image_path)            headers['Content-Type'] = 'application/octet-stream'
        return requests.post(url, data=image, headers=headers, params=options)
class FinancialAnalyst:    def __init__(self, api_key):        self.client = OpenAI(            api_key=api_key,            base_url="https://api.deepseek.com",        )
    def analyze_financials(self, financial_data):        """        执行深度财务分析(使用官方SDK)        """        prompt = f"""你是一位顶级证券分析师,请根据以下财务数据进行专业分析: {financial_data}        要求用中文输出:        1. 三个最重要的风险点(用🚨标记)        2. 三个最突出的增长亮点(用💡标记)         3. 估值建议(用📈标记)        格式要求:Markdown列表,每个分类最多3条"""
        try:            response = self.client.chat.completions.create(                model="deepseek-reasoner",                messages=[                    {"role": "system", "content": "你是拥有20年经验的证监会持牌财务分析师,擅长发现数据背后的商业逻辑"},                    {"role": "user", "content": prompt}                ],                temperature=0.2,                max_tokens=2000            )            return response.choices[0].message.content        except Exception as e:            return f"⚠️ 分析失败:{str(e)}"
app = Flask(__name__)app.config['UPLOAD_FOLDER'] = './uploads'app.config['MAX_CONTENT_LENGTH'] = 100 * 1024 * 1024  # 16MB
# 初始化API客户端textin_client = TextinOcr(    app_id="971357873**********2bef0f5c",    app_secret="2d5b5b6267************dbdde26a0")
deepseek_client = FinancialAnalyst(    api_key="sk-k3k2jeB**********************78XharBWnYAJHneI")
# 配置日志(在Flask应用初始化后添加)logging.basicConfig(    level=logging.INFO,    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',    handlers=[        logging.FileHandler('financial_analysis.log'),        logging.StreamHandler()    ])logger = logging.getLogger(__name__)
@app.route('/')def index():    return render_template('index1.html')
@app.route('/analyze', methods=['POST'])def analyze():    start_time = datetime.now()    filepath = None    try:        # ========== 1. 接收文件 ==========         logger.info("收到分析请求 | Headers: %s", request.headers)
        file = request.files.get('file')        if not file:            logger.error("未接收到文件")            return jsonify(error="请选择要上传的文件"), 400
        if not file.filename.lower().endswith('.pdf'):            logger.error("文件类型错误: %s", file.content_type)            return jsonify(error="仅支持PDF文件"), 400
        # ========== 2. 保存文件 ==========         filename = secure_filename(file.filename)        filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)        file.save(filepath)        logger.info("文件暂存成功 | 路径: %s | 大小: %dKB",                    filepath, os.path.getsize(filepath)//1024)
        # ========== 3. 解析财报 ==========         logger.info("开始解析财报...")
        resp = textin_client.recognize_pdf2md(filepath, {            'page_start': 0,            'page_count': 1000,  # 设置解析页数为1000页            'table_flavor': 'md',            'parse_mode': 'scan',  # 设置解析模式为scan模式            'page_details': 0,  # 不包含页面细节            'markdown_details': 1,            'apply_document_tree': 1,            'dpi': 144  # 分辨率设置为144 dpi        })        logger.info("request time: %s", resp.elapsed.total_seconds())
        financial_data = json.loads(resp.text)['result']['markdown']
        # 记录解析后的财报数据        logger.info("原始解析数据: %s", json.dumps(financial_data, indent=2, ensure_ascii=False))
        # ========== 5. 生成分析报告 ==========         logger.info("开始AI分析...")
        # 获取AI分析结果        analysis = deepseek_client.analyze_financials(financial_data)        logger.info("分析完成 | 结果长度: %d字符", len(analysis))        logger.info("分析完成 | 结果内容: %s", analysis)
        # 结构化分析内容        html_content = convert_markdown_to_html(analysis)
        result_text = re.sub(r'<think>.*?</think>', '', html_content, flags=re.DOTALL).replace("```markdown", "<br /><hr />")        think_text = re.sub(r'```markdown.*?```', '', html_content, flags=re.DOTALL)        logger.info(json.dumps(think_text, indent=2, ensure_ascii=False))        logger.info(json.dumps(result_text, indent=2, ensure_ascii=False))
        # ========== 6. 响应结果 ==========         duration = (datetime.now() - start_time).total_seconds()        logger.info("请求处理完成 | 耗时: %.2fs", duration)
        return jsonify(html=result_text)
    except ValueError as ve:        logger.error("业务逻辑错误: %s", str(ve), exc_info=True)        return jsonify(error=str(ve)), 400    except requests.exceptions.RequestException as re:        logger.error("API请求异常: %s", str(re), exc_info=True)        return jsonify(error="后台服务暂不可用"), 503    except Exception as e:        logger.critical("未处理异常: %s", str(e), exc_info=True)        return jsonify(error="系统内部错误"), 500    finally:        # 清理临时文件        if filepath and os.path.exists(filepath):            try:                os.remove(filepath)                logger.info("已清理临时文件: %s", filepath)            except Exception as e:                logger.warning("文件清理失败: %s", str(e))
def convert_markdown_to_html(markdown_text):    # 将 Markdown 转换为 HTML    html_content = markdown.markdown(markdown_text)    return html_content
if __name__ == '__main__':    os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)    app.run(debug=True)
② index.html
<!-- templates/index.html --><!DOCTYPE html><html><head>    <title>智能财报分析系统</title>    <link href="https://cdn.bootcdn.net/ajax/libs/twitter-bootstrap/5.3.0/css/bootstrap.min.css" rel="stylesheet">    <script src="https://cdn.bootcdn.net/ajax/libs/echarts/5.4.2/echarts.min.js"></script></head><body><div class="container mt-5">    <h2 class="mb-4">上市公司财报智能分析</h2>
    <!-- 上传区域 -->    <div class="card mb-4">        <div class="card-body">            <input type="file" id="pdfUpload" accept=".pdf" class="form-control">            <div id="loading" class="mt-3" style="display:none;">                <div class="spinner-border text-primary"></div>                <span class="ms-2">分析中...</span>            </div>        </div>    </div>
    <!-- 结果显示 -->    <div id="resultPanel" style="display:none;" class="row">        <!-- 左侧分析文本 -->        <div class="col-md-6">            <div class="card mb-4">                <div class="card-header">AI分析结论</div>                <div class="card-body">                    <div id="textAnalysis" style="white-space: pre-line;"></div>                </div>            </div>        </div>
        <!-- 右侧表格 -->        <div class="col-md-6">            <div class="card">                <div class="card-header">财务报表数据</div>                <div class="card-body">                    <div id="tablesArea"></div>                </div>            </div>        </div>    </div></div>
<script>document.getElementById('pdfUpload').addEventListener('change', function(e) {    const file = e.target.files[0];    const formData = new FormData();    formData.append('file', file);
    // 显示加载状态    document.getElementById('loading').style.display = 'block';    document.getElementById('resultPanel').style.display = 'none';
    fetch('/analyze', {        method: 'POST',        body: formData    })    .then(response => response.json())    .then(data => {        if(data.error) {            alert('错误: ' + data.error);            return;        }
        // 渲染分析文本        document.getElementById('textAnalysis').textContent = data.analysis
        // 渲染表格        renderTables(data.tables)
        document.getElementById('resultPanel').style.display = 'block';    })    .finally(() => {        document.getElementById('loading').style.display = 'none';    });});
function renderTables(tables) {    const container = document.getElementById('tablesArea')    container.innerHTML = ''
    // 定义表格样式    const tableStyle = `style="width:100%; margin-bottom:2rem; border-collapse:collapse;"`    const thStyle = `style="padding:12px; background:#f8f9fa; border:1px solid #dee2e6;"`    const tdStyle = `style="padding:12px; border:1px solid #dee2e6; text-align:right;"`
    // 遍历所有表格类型    const tableTypes = {        'income_statement': '利润表',        'balance_sheet': '资产负债表',        'cash_flow': '现金流量表'    }
    Object.entries(tableTypes).forEach(([key, title]) => {        const data = tables[key]        if(data.length === 0) return
        // 创建表格标题        const titleEl = document.createElement('h5')        titleEl.className = 'mt-4 mb-3 text-primary'        titleEl.textContent = title        container.appendChild(titleEl)
        // 创建表格        const table = document.createElement('table')        table.className = 'financial-table'        table.setAttribute('style', tableStyle)
        // 处理表头        const thead = document.createElement('thead')        const headerCells = data[0].split('|').filter(c => c.trim())        thead.innerHTML = `            <tr>                ${headerCells.map(c => `<th ${thStyle}>${c.trim()}</th>`).join('')}            </tr>        `        table.appendChild(thead)
        // 处理表格体        const tbody = document.createElement('tbody')        data.slice(1).forEach(row => {            const cells = row.split('|').filter(c => c.trim())            if(cells.length === 0) return
            const tr = document.createElement('tr')            tr.innerHTML = cells.map(c => `                <td ${tdStyle}>${c.trim().replace(/(\d)(?=(\d{3})+(?!\d))/g, '$1,')}</td>            `).join('')            tbody.appendChild(tr)        })        table.appendChild(tbody)
        container.appendChild(table)        container.appendChild(document.createElement('div')).className = 'mb-4' // 添加空行    })}
</script><style>.financial-table {    margin-bottom: 2rem;}.financial-table th {    background-color: #f8f9fa;    min-width: 120px;}.financial-table td {    font-family: 'Courier New', monospace;}</style></body></html>

2. 案例运行效果

我们从雪球上下载某软件公式的2024Q3财报,上传到我们的智能分析项目。

五、行业应用案例

1. 金融行业

金融行业对精确的财报分析有着强烈的需求。通过合合信息TextIn与DeepSeek的结合,金融机构能够自动化处理财报文档,并获取AI分析的结果,极大提高了分析效率。无论是用于投资决策还是企业评估,系统都能提供准确、及时的分析报告,帮助决策者抓住市场机会。

2. 制造业

对于制造业企业来说,财报中往往涉及大量的供应链数据、采购订单和合同等文档。通过合合信息TextIn的自动化文档解析与DeepSeek的财务分析,制造业能够迅速获取财报中的核心数据,识别财务风险,并优化资源配置,提高运营效率。

六、总结

合合信息的TextIn与DeepSeek R1的结合,提供了一种全面、自动化的财报分析解决方案。通过自动化文档解析和深度AI分析,企业不仅能够高效提取财务数据,还能精准识别财务中的潜在问题和业务机会。这一智能化的解决方案正在成为金融、制造等行业财报处理的核心工具,助力企业在复杂的市场环境中做出更加明智的决策。

机器学习算法AI大数据技术

 搜索公众号添加: datanlp

图片

长按图片,识别二维码

阅读过本文的人还看了以下文章:

实时语义分割ENet算法,提取书本/票据边缘

整理开源的中文大语言模型,以规模较小、可私有化部署、训练成本较低的模型为主

《大语言模型》PDF下载

动手学深度学习-(李沐)PyTorch版本

YOLOv9电动车头盔佩戴检测,详细讲解模型训练

TensorFlow 2.0深度学习案例实战

基于40万表格数据集TableBank,用MaskRCNN做表格检测

《基于深度学习的自然语言处理》中/英PDF

Deep Learning 中文版初版-周志华团队

【全套视频课】最全的目标检测算法系列讲解,通俗易懂!

《美团机器学习实践》_美团算法团队.pdf

《深度学习入门:基于Python的理论与实现》高清中文PDF+源码

《深度学习:基于Keras的Python实践》PDF和代码

特征提取与图像处理(第二版).pdf

python就业班学习视频,从入门到实战项目

2019最新《PyTorch自然语言处理》英、中文版PDF+源码

《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码

《深度学习之pytorch》pdf+附书源码

PyTorch深度学习快速实战入门《pytorch-handbook》

【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》

《Python数据分析与挖掘实战》PDF+完整源码

汽车行业完整知识图谱项目实战视频(全23课)

李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材

笔记、代码清晰易懂!李航《统计学习方法》最新资源全套!

《神经网络与深度学习》最新2018版中英PDF+源码

将机器学习模型部署为REST API

FashionAI服装属性标签图像识别Top1-5方案分享

重要开源!CNN-RNN-CTC 实现手写汉字识别

yolo3 检测出图像中的不规则汉字

同样是机器学习算法工程师,你的面试为什么过不了?

前海征信大数据算法:风险概率预测

【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类

VGG16迁移学习,实现医学图像识别分类工程项目

特征工程(一)

特征工程(二) :文本数据的展开、过滤和分块

特征工程(三):特征缩放,从词袋到 TF-IDF

特征工程(四): 类别特征

特征工程(五): PCA 降维

特征工程(六): 非线性特征提取和模型堆叠

特征工程(七):图像特征提取和深度学习

如何利用全新的决策树集成级联结构gcForest做特征工程并打分?

Machine Learning Yearning 中文翻译稿

蚂蚁金服2018秋招-算法工程师(共四面)通过

全球AI挑战-场景分类的比赛源码(多模型融合)

斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)

python+flask搭建CNN在线识别手写中文网站

中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程

不断更新资源

深度学习、机器学习、数据分析、python

 搜索公众号添加: datayx  

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值