1:概念:时间复杂度是总运算次数表达式中受n的变化影响最大的那一项(不含系数)
5*n^5+10000000的时间复杂度是n^5
2:计算方法:时间复杂度就是一个算法中的语句执行次数最多的一个。
:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。 当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。 我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。 此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。 “大O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。 这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。 O(1) Temp=i;i=j;j=temp; 以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。 O(n^2) 2.1. 交换i和j的内容 sum=0; (一次) for(i=1;i<=n;i++) (n次 ) for(j=1;j<=n;j++) (n^2次 ) sum++; (n^2次 ) 解:T(n)=2n^2+n+1 =O(n^2) 2.2. for (i=1;i<n;i++) { y=y+1; ① for (j=0;j<=(2*n);j++) x++; ② } 解: 语句1的频度是n-1 语句2的频度是(n-1)*(2n+1)=2n^2-n-1 f(n)=2n^2-n-1+(n-1)=2n^2-2 该程序的时间复杂度T(n)=O(n^2). O(n) 2.3. a=0; b=1; |