[Python爬虫] 十、Scrapy 框架


往期内容提要:


一、Scrapy介绍

Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架,我们只需要实现少量的代码,就能够快速的抓取。
在这里插入图片描述
这是因为 Scrapy 使用了 Twisted['twɪstɪd]异步网络框架,可以加快我们的下载速度。
在这里插入图片描述

  • 异步:调用在发出之后,这个调用就直接返回,不管有无结果
  • 非阻塞:关注的是程序在等待调用结果(消息,返回值)时的状态,指在不能立刻得到结果之前,该调用不会阻塞当前线程。

在这里插入图片描述
在这里插入图片描述


二、Scrapy的安装介绍

Scrapy框架官方网址:http://doc.scrapy.org/en/latest

Scrapy中文维护站点:http://scrapy-chs.readthedocs.io/zh_CN/latest/index.html

(1) Windows 安装方式

  • Python 2 / 3
  • 升级pip版本:pip install --upgrade pip
  • 通过pip 安装 Scrapy 框架pip install Scrapy

(2) Ubuntu 需要9.10或以上版本安装方式

  • Python 2 / 3
  • 安装非Python的依赖 sudo apt-get install python-dev python-pip libxml2-dev libxslt1-dev zlib1g-dev libffi-dev libssl-dev
  • 通过pip 安装 Scrapy 框架 sudo pip install scrapy

安装后,只要在命令终端输入 scrapy,提示类似以下结果,代表已经安装成功

在这里插入图片描述

具体Scrapy安装流程参考:http://doc.scrapy.org/en/latest/intro/install.html#intro-install-platform-notes 里面有各个平台的安装方法


三、操作案例

学习目标:
  • 创建一个Scrapy项目
  • 定义提取的结构化数据(Item)
  • 编写爬取网站的 Spider 并提取出结构化数据(Item)
  • 编写 Item Pipelines 来存储提取到的Item(即结构化数据)

(1) 新建项目(scrapy startproject)

  • 在开始爬取之前,必须创建一个新的Scrapy项目。进入自定义的项目目录中,运行下列命令:
scrapy startproject mySpider
  • 其中, mySpider 为项目名称,可以看到将会创建一个 mySpider 文件夹,目录结构大致如下:
.
└── mySpider
    ├── mySpide
    │       ├── __init__.py
    │       ├── items.py
    │       ├── pipelines.py
    │       ├── settings.py
    │       └── spiders
    │           └── __init__.py
    └── scrapy.cfg

下面来简单介绍一下各个主要文件的作用:

  • scrapy.cfg :项目的配置文件
  • mySpider/ :项目的Python模块,将会从这里引用代码
    1.mySpider/items.py :项目的目标文件
    2.mySpider/pipelines.py :项目的管道文件
    3.mySpider/settings.py :项目的设置文件
    4.mySpider/spiders/ :存储爬虫代码目录

在这里插入图片描述

(2) 明确目标(mySpider/items.py)

我们打算抓取:http://www.itcast.cn/channel/teacher.shtml 网站里的所有讲师的姓名、职称和个人信息。

  1. 打开mySpider目录下的items.py

  2. Item 定义结构化数据字段,用来保存爬取到的数据,有点像Python中的dict,但是提供了一些额外的保护减少错误。

  3. 可以通过创建一个 scrapy.Item 类, 并且定义类型为 scrapy.Field的类属性来定义一个Item。

  4. 接下来,创建一个ItcastItem 类,和构建item模型(model)。

import scrapy

class ItcastItem(scrapy.Item):
    name = scrapy.Field()
    level = scrapy.Field()
    info = scrapy.Field()

(3) 制作爬虫

爬虫功能要分三步:

  1. 爬数据
    scrapy genspider itcast "itcast.cn”
  2. 提取数据
    完善spider,使用xpath等方法
  3. 保存数据
    pipeline中保存数据
1. 爬数据
  • A . 在当前目录下输入命令,将在mySpider/spider目录下创建一个名为itcast的爬虫,并指定爬取域的范围:
scrapy genspider itcast "itcast.cn"

在这里插入图片描述

  • B. 打开 mySpider/spider目录里的 itcast.py,默认增加了下列代码:
import scrapy

class ItcastSpider(scrapy.Spider):
    name = "itcast"
    allowed_domains = ["itcast.cn"]
    start_urls = (
        'http://www.itcast.cn/',
    )

    def parse(self, response):
        pass
其实也可以由我们自行创建itcast.py并编写上面的代码,只不过使用命令可以免去编写固定代码的麻烦:

要建立一个Spider, 你必须用scrapy.Spider类创建一个子类,并确定了三个强制的属性 和 一个方法。

  • name = "" :这个爬虫的识别名称,必须是唯一的,在不同的爬虫必须定义不同的名字。爬虫启动使用 spider crawl [名字] 。

  • allow_domains = [] 是搜索的域名范围,也就是爬虫的约束区域,规定爬虫只爬取这个域名下的网页,不存在的URL会被忽略。

  • start_urls = () :爬取的URL元祖/列表。爬虫从这里开始抓取数据,所以,第一次下载的数据将会从这些urls开始。其他子URL将会从这些起始URL中继承性生成。

  • parse(self, response) :解析的方法,每个初始URL完成下载后将被调用,调用的时候传入从每一个URL传回的Response对象来作为唯一参数,主要作用如下:

    1. 负责解析返回的网页数据(response.body),提取结构化数据(生成item)
    2. 生成需要下一页的URL请求。
# 将start_urls的值修改为需要爬取的第一个url
start_urls = ("http://www.itcast.cn/channel/teacher.shtml",)

# 修改parse()方法
def parse(self, response):
    with open("teacher.html", "w") as f:
        f.write(response.text)

然后运行一下看看,在mySpider目录下执行:

scrapy crawl itcast

是的,就是 itcast,看上面代码,它是 ItcastSpider 类的 name 属性,也就是使用 scrapy genspider命令的爬虫名。

一个Scrapy爬虫项目里,可以存在多个爬虫。各个爬虫在执行时,就是按照 name 属性来区分。

运行之后,如果打印的日志出现 [scrapy] INFO: Spider closed (finished),代表执行完成。 之后当前文件夹中就出现了一个 teacher.html 文件,里面就是我们刚刚要爬取的网页的全部源代码信息。

2. 取数据
  • 爬取整个网页完毕,接下来的就是取的过程了,首先观察页面源码:

在这里插入图片描述

<div class="li_txt">
    <h3>  xxx  </h3>
    <h4> xxxxx </h4>
    <p> xxxxxxxx </p>
是不是一目了然?直接上XPath开始提取数据吧。
  • 我们之前在mySpider/items.py 里定义了一个ItcastItem类。 这里引入进来
from mySpider.items import ItcastItem
  • 然后将我们得到的数据封装到一个 ItcastItem 对象中,可以保存每个老师的属性,并使用管道,将spider的数据传到pipeline:
from mySpider.items import ItcastItem

def parse(self, response):
    #open("teacher.html","wb").write(response.body).close()
    # 存放老师信息的集合
    items = []

    for each in response.xpath("//div[@class='li_txt']"):
        # 将我们得到的数据封装到一个 `ItcastItem` 对象
        item = ItcastItem()
        #extract()方法返回的都是字符串
        name = each.xpath("h3/text()").extract_first()
        title = each.xpath("h4/text()").extract_first()
        info = each.xpath("p/text()").extract_first()
        
        #items.append(item)

        #将获取的数据交给pipelines
        yield item

    # 返回数据,不经过pipeline
    #return items

为什么要使用yield?让整个函数变成一个生成器,变成generator(生成器)的好处是每次遍历的时候挨个读到内存中,不会导致内存的占用量瞬间变高。(python3中的range和python2中的xrange同理)

3. 保存数据
A. 如不使用pipeline,scrapy保存信息的最简单的方法主要有四种,-o 输出指定格式的文件,命令如下:
# json格式,默认为Unicode编码
scrapy crawl itcast -o teachers.json

# json lines格式,默认为Unicode编码
scrapy crawl itcast -o teachers.jsonl

# csv 逗号表达式,可用Excel打开
scrapy crawl itcast -o teachers.csv

# xml格式
scrapy crawl itcast -o teachers.xml
B. 如使用pipeline,要将所有(从所有'spider'中)爬取到的item,存储到一个独立地items.json 文件,每行包含一个序列化为'JSON'格式的'item':

(1)打开 pipelines.py 文件,写入下面代码:

# pipelines.py

import json

class ItcastJsonPipeline(object):

    def __init__(self):
        self.file = open('teacher.json', 'wb')

    def process_item(self, item, spider):
        content = json.dumps(dict(item), ensure_ascii=False) + "\n"
        self.file.write(content)
        return item

    def close_spider(self, spider):
        self.file.close()

(2)启用一个Item Pipeline组件:

为了启用Item Pipeline组件,必须将它的类添加到 settings.py文件ITEM_PIPELINES 配置,就像下面这个例子:

# Configure item pipelines
# See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
    #'mySpider.pipelines.SomePipeline': 300,
    "mySpider.pipelines.ItcastJsonPipeline":300
}

分配给每个类的整型值,确定了他们运行的顺序,item按数字从低到高的顺序,通过pipeline,通常将这些数字定义在0-1000范围内(0-1000随意设置,数值越低,组件的优先级越高)


转眼间 [Python爬虫] 专题已写至第十章,或多或少已经开始明白Python爬虫的基本原理和运用方法,从阶段性学习来看,这一专题的内容就到此结束了,接下来的学习是更为深入的框架学习。比如这里只是简单的对 Scrapy 框架做一个简略概述。如果你对 Scrapy 框架感兴趣,接下来将是新的开始,加油!


【Python爬虫】Scrapy 后续学习路线

  • [Python爬虫] Scrapy 框架之Scrapy Shell
  • [Python爬虫] Scrapy 框架之Item Pipeline
  • [Python爬虫] Scrapy 框架之Spider
  • [Python爬虫] Scrapy 框架之CrawlSpiders
  • [Python爬虫] Scrapy 框架之Request
  • [Python爬虫] Scrapy 框架之Downloader Middlewares
  • [Python爬虫] Scrapy 框架之Settings
  • [Python爬虫] scrapy-redis

如果您有任何疑问或者好的建议,期待你的留言与评论!

©️2020 CSDN 皮肤主题: 代码科技 设计师: Amelia_0503 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值