ndarray数组变换

1 import numpy as np

维度变换

1 a = np.arange(24)
2 a
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
       17, 18, 19, 20, 21, 22, 23])

reshape(),视图,不修改原数组

1 a.reshape(4,6)
array([[ 0,  1,  2,  3,  4,  5],
       [ 6,  7,  8,  9, 10, 11],
       [12, 13, 14, 15, 16, 17],
       [18, 19, 20, 21, 22, 23]])

 

1 a.reshape(2,3,4)
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]],

       [[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]]])

 

1 a
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
       17, 18, 19, 20, 21, 22, 23])

 

resize() 修改原数组

1 a.resize(2,3,4)
1 a
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]],

       [[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]]])

 

对数组降维,返回折叠后的一维数组,修改视图

1 a.flatten()
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
       17, 18, 19, 20, 21, 22, 23])

 

类型变换

1 b = np.array([True,20,177.7])
2 b,b.dtype
(array([  1. ,  20. , 177.7]), dtype('float64'))

 

1 # 定义数组时修改类型
2 np.array([True,20,177.7],dtype=np.int)
array([  1,  20, 177])

 

1 #调用数组时修改类型  #并不改变原数组
2 b
3 b.astype(np.int) #改变视图
array([  1,  20, 177])

 

1 b.astype(np.unicode_)
array(['1.0', '20.0', '177.7'], dtype='<U32')

 

1 b
array([  1. ,  20. , 177.7])

 

转载于:https://www.cnblogs.com/doitjust/p/9302635.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值