2019暑假杭二day8测试总结

[toc]

T1

题目大意

从前有一个国家,国力繁盛。然而众所周知,一旦一个国家强大了起来,那么这个国家一定会有许多奸臣想要上位。所以来进谏的人无论是谁,无论提出的是什么建议,都有可使国家走向灭亡。

郭紫丽现在就身处这个国家之中,但是她不希望国家出现这种情况。所以她希望给国王出主意。

然而旁边的大臣美国恶女同样也知道这个定律,所以她看到郭紫丽来进谏时,断定她一定是奸臣。

郭紫丽为了证明自己不是奸臣,就需要在智力上打败美国恶女。什么智力游戏呢?当然是下棋了。

美国恶女给出了一个n×m的棋盘,第i行第j列的格子上有一个生命值为$a_{i,j}$, 的小兵。郭紫丽需要每次吸取一个小兵的生命值以提升自己的能力,但郭紫丽是一个有分寸的人,她不一定会把某个小兵的生命值全部吸完,但她至少会吸取一点。每次郭紫丽吸取完后,美国恶女也会进行一次同样的操作。

为了体现自己作为大臣的气度,美国恶女将游戏简化了一下。郭紫丽可以任意选取一行的小兵来进行这个游戏,也就是说,选好之后,每一个操作只能在这一行上进行。美国恶女又说,如果谁吸取了那一行最后一个小兵的最后一点生命值,那么这个人就会因为守护之力成为胜者。

郭紫丽当然不希望自己输掉,所以她会把棋盘上每一个小兵的生命值告诉你,希望你告诉她,有多少种选行的方式能够获得胜利。但为了不让自己作弊被发现,郭紫丽每次询问都会给出一个区间[l,r],你只能在第[l,r]行中选择。 Input 第一行,两个数n,m表示棋盘的大小。

第二行至第n+1 行,每行m个正整数,第i + 1行第j列上的数表示第i行第j列格子上小兵的生命值。第n+2 行,一个整数Q,表示询问或修改次数。

接下来 Q 行,每行第一个数是 opt ,表示操作编号。如果 opt = 1,后面跟着 2 个数 l,r 表示一次询问操作。如果 opt = 2,则后面跟着五个整数 x1,y1,x2,y2,p。表示将以(x1,y1)为左上角,(x2,y2)为右下角的矩形每个格子上的小兵的生命值都异或p。 Output 输出若干行。对于每一个 opt = 1,输出一个数,表示有多少行小兵能使郭紫丽一定获胜。 \(n\times m\le 100000,Q\le 100000\)

然而美国恶女也不希望郭紫丽那么容易就获得胜利,所以美国恶女会随时改变棋盘上兵的生命值。请你帮助郭紫丽解决这个问题。

sol

SG博弈,某一行能赢当且仅当这一行生命值xor起来为零。所以可以把n*m矩阵压缩成n行,操作相当于区间xor,区间查多少的数不为零。

nq暴力可以水过

正解是分块,设$f[i][j]$为第i块j出现过多少次,$tag[i]$为第i块的标记。修改时小块暴力,更改$f$,大块打标记。查询时小块暴力,大块查询有多少个数等于$tag$,可以算出有多少个0,总数减0数就是答案。

T2

题目大意

\[ \sum_{k=1}^{\lfloor\frac{n}{2}\rfloor}C(_{n-k}^k) \]

答案对998244353取模,\(n\le 10^{18}\)

sol

打表可以发现,答案为$fib_n-1$,所以直接矩阵快速幂。

证明:题目其实要我们求杨辉三角的某对角线减$C(_n^0)$,先不管减1,杨辉三角的计算过程如下: 在这里插入图片描述 所以每一对角线值为上两个对角线值之和。

证毕。

T3

题目大意

因式分解。

Input

第一行一个数$n,n\le 10$,表示多项式的次数。

第二行有$n+1$个数,表示多项式从高到低每一项的系数。保证最高次项不为$0$,系数$\le 10^6$。

Output

一行一个字符串,表示因式分解后的结果。

你的输出需要遵循以下原则:

  1. 未知数用代$x$替。
  2. 若有可提取的常数,需提取出来放在最前面。例如,$2x+4$应写成$2(x+2)$。
  3. 若最高次项是负数,则需单独提出来,如$−x+2$应写成$−(x−2)$。
  4. 若分解出来有单项式,需放在最前面(常数项之后),例如$x^2+2x$应写成$x(x+2)\(而不是\)(x+2)x$。
  5. 其余分解出来的式子按照常数项从小到大排列。例如$(x+3)(x−1)\(应写成\)(x−1)(x+3)$

保证原式可以分解成若干个最高次数为 1 的单项式或多项式之积,不会有相同的项(即不会出现$(x-1)^2$之类的式子),系数及常数项都是整数,分解出来的多项式一次项系数为1。

形象一点,以下式子是不会给出的:

$2x^2+3x+1=(2x+1)(x+1)$,因为出现了一次项系数为 2 的因式。

\(x^2+2x+1=(x+1)^2\),因为出现了平方项。

\(x^3+2x^2+ 2x+1=(x^2+x+1)(x+1)\),因为出现了最高次数为 2 的因式。

\(x^2+\frac{5}{2}x+1=(x+2)(x+\frac{1}{2})\),因为出现了分数。

Sample Input

4
2 − 14 14 30 0

Output

2(x−5)(x−3)(x+1)

sol

我写了一个dfs,居然有50分。

正解其实十分简单,先把常数和单项式提出来。考虑一件事,若$x+k$是原式的一个因式,则把$x=-k$带入原式一定值为0,反之亦然。

所以可以从$106$枚举到$-106$,依次代入原式,值为0则发现一个因式。

有一个问题,\((10^6)^{10}\),爆long long了,可以像哈希判等的方法,取模后判等。由于代码过于简单,可以写双哈希。

code:

#include<bits/stdc++.h>
using namespace std;
const int mod1=1e9+7,mod2=1e9+9;
long long a[15],b;
inline long long read()
{
	long long x=0;
	int f=1;
	char ch=getchar();
	for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
	for(;ch>='0'&&ch<='9';x=(x<<1)+(x<<3)+(ch^48),ch=getchar());
	return x*f;
}
int main()
{
	freopen("fenty.in","r",stdin);
	freopen("fenty.out","w",stdout);
	int n=read();
	for(int i=n;~i;i--)
		a[i]=read();
	b=a[n];//常数
	for(int i=n;~i;i--)
		a[i]/=b;
	if(b!=1)
	{
		if(b==-1)putchar('-');
		else printf("%lld",b);
	}
	if(!a[0])//单项式
	{
		for(int i=0;i<n;i++)a[i]=a[i+1];
		n--;
		putchar('x');
	}
	for(int i=1e6;i>=-1e6;i--)if(i!=0)
	{
		int ans1=0,ans2=0,p1=1,p2=1;
		for(int j=0;j<=n;j++)
		{
			ans1=(ans1+a[j]%mod1*p1)%mod1;
			ans2=(ans2+a[j]%mod2*p2)%mod2;
			p1=1ll*p1*i%mod1;
			p2=1ll*p2*i%mod2;
		}
		if(!ans1&&!ans2)//判等
		{
			printf("(x");
			if(i<0)putchar('+');
			printf("%d)",-i);
		}
	}
	puts("");
	return 0;
}

转载于:https://www.cnblogs.com/hht2005/p/11402641.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值