KMP算法

一:背景

 kmp算法又称“看毛片”算法,是一个效率非常高的字符串匹配算法。   kmp算法完成的任务是:字符串匹配。给你两个字符串,寻找其中一个字符串是否包含另一个字符串,如果包含,返回包含的起始位置(或者包含几次)。如下面两个字符串:

 

char S[1000] = "bacbababadababacambabacaddababacasdsd";
char F[1000] = "ababaca";

 

S数组包含F数组两次,分别在下标10,26处。

“bacbababadababacambabacaddababacasdsd”

 

 

常规方法是遍历a的每一个位置,然后从该位置开始进行匹配,但是这种方法的复杂度是O(nm)。kmp算法通过一个O(m)的预处理,使匹配的复杂度降为O(n+m)。

二:算法过程分析

我们首先用一个图来描述kmp算法的思想。在字符串S中寻找F,当匹配到位置i时两个字符串不相等,这时我们需要将字符串T向前移动。常规方法是每次向前移动一位,但是它没有考虑前i-1位已经比较过这个事实,所以效率不高。事实上,如果我们提前计算某些信息,就有可能一次前移多位。假设我们根据已经获得的信息知道可以前移k位,我们分析移位前后的T有什么特点。我们可以得到如下的结论:

    • A段字符串是F的一个前缀。
    • B段字符串是F的一个后缀。
    • A段字符串和B段字符串相等。

 所以前移k位之后,可以继续比较位置i的前提是f的前i-1个位置满足:长度为i-k-1的前缀A和后缀B相同。只有这样,我们才可以前移k位后从新的位置继续比较。

所以kmp算法的核心即是计算字符串F每一个位置之前的字符串的前缀和后缀公共部分的最大长度(不包括字符串本身,否则最大长度始终是字符串本身)。

获得F每一个位置的最大公共长度之后,就可以利用该最大公共长度快速和字符串S比较。当每次比较到两个字符串的字符不同时,我们就可以根据最大公共长度将字符串F向前移动(已匹配长度-最大公共长度)位,接着继续比较下一个位置。事实上,字符串F的前移只是概念上的前移,只要我们在比较的时候从最大公共长度之后比较F和S即可达到字符串f前移的目的。

三:next数组计算:

  理解了kmp算法的基本原理,下一步就是要获得字符串f每一个位置的最大公共长度。这个最大公共长度在算法导论里面被记为next数组。在这里要注意一点,next数组表示的是长度,下标从1开始;但是在遍历原字符串时,下标还是从0开始。假设我们现在已经求得next[1]、next[2]、……next[i],分别表示长度为1到i的字符串的前缀和后缀最大公共长度,现在要求next[i+1]。由上图我们可以看到,如果位置i和位置next[i]处的两个字符相同(下标从零开始),则next[i+1]等于next[i]加1。如果两个位置的字符不相同,我们可以将长度为next[i]的字符串继续分割,获得其最大公共长度next[next[i]],然后再和位置i的字符比较。这是因为长度为next[i]前缀和后缀都可以分割成上部的构造,如果位置next[next[i]]和位置i的字符相同,则next[i+1]就等于next[next[i]]加1。如果不相等,就可以继续分割长度为next[next[i]]的字符串,直到字符串长度为0为止。由此我们可以写出求next数组的代码:

void getNext()
{
    int j, k;
    j = 0; k = -1; next[0] = -1;
    while(j < tlen)
        if(k == -1 || T[j] == T[k])
            next[++j] = ++k;
        else
            k = next[k];

}

四:字符串匹配

  计算完成next数组之后,我们就可以利用next数组在字符串S中寻找字符串F的出现位置。匹配的代码和求next数组的代码非常相似,因为匹配的过程和求next数组的过程其实是一样的。假设现在字符串F的前i个位置都和从某个位置开始的字符串S匹配,现在比较第i+1个位置。如果第i+1个位置相同,接着比较第i+2个位置;如果第i+1个位置不同,则出现不匹配,我们依旧要将长度为i的字符串分割,获得其最大公共长度next[i],然后从next[i]继续比较两个字符串。这个过程和求next数组一致,所以可以匹配代码如下:

/*
返回模式串T在主串S中首次出现的位置
返回的位置是从0开始的。
*/
int KMP_Index()
{
    int i = 0, j = 0;
    getNext();

    while(i < slen && j < tlen)
    {
        if(j == -1 || S[i] == T[j])
        {
            i++; j++;
        }
        else
            j = next[j];
    }
    if(j == tlen)
        return i - tlen;
    else
        return -1;
}
/*
返回模式串在主串S中出现的次数
*/
int KMP_Count()
{
    int ans = 0;
    int i, j = 0;

    if(slen == 1 && tlen == 1)
    {
        if(S[0] == T[0])
            return 1;
        else
            return 0;
    }
    getNext();
    for(i = 0; i < slen; i++)
    {
        while(j > 0 && S[i] != T[j])
            j = next[j];
        if(S[i] == T[j])
            j++;
        if(j == tlen)
        {
            ans++;
            j = next[j];
        }
    }
    return ans;
}

五:代码

/*
这个模板 字符串是从0开始的
Next数组是从1开始的
*/
#include <iostream>
#include <cstring>
using namespace std;

const int N = 1000002;
int next[N];
char S[N], T[N];
int slen, tlen;

void getNext()
{
    int j, k;
    j = 0; k = -1; next[0] = -1;
    while(j < tlen)
        if(k == -1 || T[j] == T[k])
            next[++j] = ++k;
        else
            k = next[k];

}
/*
返回模式串T在主串S中首次出现的位置
返回的位置是从0开始的。
*/
int KMP_Index()
{
    int i = 0, j = 0;
    getNext();

    while(i < slen && j < tlen)
    {
        if(j == -1 || S[i] == T[j])
        {
            i++; j++;
        }
        else
            j = next[j];
    }
    if(j == tlen)
        return i - tlen;
    else
        return -1;
}
/*
返回模式串在主串S中出现的次数
*/
int KMP_Count()
{
    int ans = 0;
    int i, j = 0;

    if(slen == 1 && tlen == 1)
    {
        if(S[0] == T[0])
            return 1;
        else
            return 0;
    }
    getNext();
    for(i = 0; i < slen; i++)
    {
        while(j > 0 && S[i] != T[j])
            j = next[j];
        if(S[i] == T[j])
            j++;
        if(j == tlen)
        {
            ans++;
            j = next[j];
        }
    }
    return ans;
}
int main()
{

    int TT;
    int i, cc;
    cin>>TT;
    while(TT--)
    {
        cin>>S>>T;
        slen = strlen(S);
        tlen = strlen(T);
        cout<<"模式串T在主串S中首次出现的位置是: "<<KMP_Index()<<endl;
        cout<<"模式串T在主串S中出现的次数为: "<<KMP_Count()<<endl;
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/aiguona/p/9133865.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值