BZOJ1003: [ZJOI2006]物流运输(最短路+DP)

题目:

1003: [ZJOI2006]物流运输

解析:

最短路+DP
我们用\(no[i][j]\)来表示\(i\)在第\(j\)天不可以经过
\(cost[i][j]\)表示第\(i\)天到第\(j\)天的花费
在最短路的时候判断一下在第\(i\)天到第\(j\)天中哪些码头不可以走,在做最短路时跳过

最后设f[i]表示到第i天时的最小花费
转移方程
\(f[i] = min(f[i], f[j]+k+cost[j+1][i]*(i-j))\)

代码:

#include <bits/stdc++.h>

using namespace std;

const int N = 1010;
const int INF = 0x3f3f3f3f;

int n, m, k, E, num, t;
int head[N], dis[N];

long long f[N], cost[N][N];

bool vis[N], no[N][N], mark[N];

struct node {
    int v, nx, w;
} e[N];

struct edge {
    int id, dis;
    bool operator <(const edge &oth) const {
        return dis > oth.dis;
    }
};

inline void add(int u, int v, int w) {
    e[++num] = (node) {v, head[u], w}, head[u] = num;
}

priority_queue<edge>q;
void dijkstra(int s, int from, int to) {
    memset(dis, INF, sizeof dis);
    memset(vis, 0, sizeof vis);
    memset(mark, 0, sizeof mark);
    for (int i = 1; i <= m; ++i)
        for (int j = from; j <= to; ++j)
            if (no[i][j]) mark[i] = 1;
    dis[s] = 0; 
    q.push((edge) {s, 0});
    while (!q.empty()) {
        int u = q.top().id;
        q.pop();
        if (vis[u]) continue;
        vis[u] = 1;
        for (int i = head[u]; ~i; i = e[i].nx) {
            int v = e[i].v;
            if (mark[v]) continue;
            if (dis[v] > dis[u] + e[i].w) 
                q.push((edge) {v, dis[v] = dis[u] + e[i].w});
        }
    }
}

signed main() {
    memset(head, -1, sizeof head);
    cin >> n >> m >> k >> E;
    for (int i = 1, x, y, z; i <= E; ++i) {
        cin >> x >> y >> z;
        add(x, y, z), add(y, x, z);
    }
    cin >> t;
    for (int i = 1, x, y, z; i <= t; ++i) {
        cin >> x >> y >> z;
        for (int j = y; j <= z; ++j) no[x][j] = 1;
    }
    for (int i = 1; i <= n; ++i)
        for (int j = i; j <= n; ++j) {
            dijkstra(1, i, j);
            cost[i][j] = dis[m];
        }
    for (int i = 1; i <= n; ++i) ;
    for (int i = 1; i <= n; ++i) {
        f[i] = cost[1][i] * i;
        for (int j = 1; j <= i; ++j) {
            f[i] = min(f[i], f[j] + k + cost[j + 1][i] * (i - j));
        }
    }
    cout << f[n];
}

转载于:https://www.cnblogs.com/lykkk/p/11347171.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值