%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import os
import sys
import time
import sklearn
import tensorflow as tf
from tensorflow import keras
print(tf.__version__)
print(sys.version_info)
for module in mpl,np,pd,sklearn,tf,keras:
print(module.__name__,module.__version__)
# 影评文本情感分类
# word-level model
# char-level model, subword-level model, word-level model
# "hello" , "he" "ll" "o" , "h" "e" "l" "o"
imdb = keras.datasets.imdb
varcob_size = 10000
index_from = 3
# 获取训练数据
(train_data,train_labels),(test_data,test_labels) = imdb.load_data(num_words = varcob_size,index_from = index_from)
print(train_data[0],train_labels[0]) # train_data value is word_id
pri

这篇博客介绍了如何使用TensorFlow2.0进行影评文本的情感分类,通过构建词嵌入和双向LSTM模型进行处理。首先加载IMDb数据集并进行预处理,然后构建模型,包括Embedding层、双向LSTM层和全连接层,最后展示训练和验证的损失及准确率曲线,并评估模型在测试集上的表现。
最低0.47元/天 解锁文章
1270

被折叠的 条评论
为什么被折叠?



