Tensorflow2.0之影评文本情感分类 (embedding + LSTM)

这篇博客介绍了如何使用TensorFlow2.0进行影评文本的情感分类,通过构建词嵌入和双向LSTM模型进行处理。首先加载IMDb数据集并进行预处理,然后构建模型,包括Embedding层、双向LSTM层和全连接层,最后展示训练和验证的损失及准确率曲线,并评估模型在测试集上的表现。
摘要由CSDN通过智能技术生成

%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import os
import sys
import time
import sklearn
import tensorflow as tf

from tensorflow import keras

print(tf.__version__)
print(sys.version_info)
for module in mpl,np,pd,sklearn,tf,keras:
    print(module.__name__,module.__version__)

 

# 影评文本情感分类
# word-level model
# char-level model, subword-level model, word-level model
# "hello" , "he" "ll" "o" , "h" "e" "l" "o"
imdb = keras.datasets.imdb
varcob_size = 10000
index_from = 3

# 获取训练数据
(train_data,train_labels),(test_data,test_labels) = imdb.load_data(num_words = varcob_size,index_from = index_from)

print(train_data[0],train_labels[0]) # train_data value is word_id
pri

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值