莫比乌斯反演学习笔记

前置芝士

极高的数学造诣与不怕劳累的精神


1616590-20190419203503581-1003223648.jpg
还有可能会用到的这么个东西 虽然好像真的rbl


正文

1616590-20190419203435470-386653069.png
我们可以非常轻易地手动模拟出\({f(n)}\)\({g(d)}\)的关系

\[{f(1)=g(1)}\]

\[{f(2)=g(1)+g(2)}\]

\[{...}\]

\[{f(6)=g(1)+g(2)+g(3)+g(6)}\]

与此同时,我们也一样能够从\({f(n)}\)逆推到\({g(d)}\)

\[{g(1)=f(1)}\]

\[{g(2)=f(2)-f(1)}\]

\[{...}\]

\[{g(6)=f(6)-f(3)-f(2)+f(1)}\]

我们会发现,这样的一个式子,并没有从\({f(n)}\)\({g(d)}\)那么和谐,而是有加有减,似乎不太好处理。

\[{g(n)=\sum_{d|n}^{}}f(d)*? \]

我们会发现,每一个\({g(n)}\)都是由上面这样一个式子推出来的,只不过还多了一个系数

然后我们就要引入一个新的东西

莫比乌斯函数

5c7cc0952cd03.png

莫比乌斯函数是一个很有趣的函数,其中有很多很优美,我们也特别喜欢的性质

性质1:莫比乌斯函数是一个积性函数

这个东西应该没什么好说的,自己带一带,YY一下就能出来(其实是我自己懒得证明啦QAQ)

这对我们有什么好处呢?

还记得欧拉函数\({\varphi (n)}\)

所以同样,我们也可以用线性筛来求解莫比乌斯函数


第一种求法:利用定义来求莫比乌斯函数

贴代码吧,自行理解

void mobius()
{
    for(int i=1;i<=maxn;++i)
        miu[i]=1;
    for(int i=2;i<=maxn;++i)
    {
        if(!vis[i])
        {
            miu[i]=-1;
            for(int j=i+i;j<=maxn;j+=i)
            {
                vis[j]=1;
                if((j/i)%i==0) miu[j]=0;
                else miu[j]*=-1;
            }
        }
    }
}
第二种求法:利用积性函数的性质来求莫比乌斯函数

楼主很懒,什么也没有留下


性质2:对于任意正整数n,有
\[ {\sum_{d|n}} \mu(d) \left\{\begin{matrix} 1,n=1\\ 0,n>1 \end{matrix}\right. \]

5c7d06114757a.png

这两个性质真是太美妙了不是吗


回到正题,上文我们得到

\[{g(n)=\sum_{d|n}^{}}f(d)*? \]

继续观察,我们可以发现

\({f(1)}\)的符号并不是唯一确定的(观察\({g(1)andg(6)}\)

于是我们可以猜想,前面的系数与\({\frac{n}{d}}\)有关

所以我们可以猜想得到

\[{{g(n)=\sum_{d|n}^{}}f(d)*\mu (\frac{n}{d})} \]

然后再代换一下,得到

\[{{g(n)=\sum_{d|n}^{}}f(\frac{n}{d})*\mu (d)} \]

既然是猜想,自然需要证明

首先我们可以把\({f(\frac{n}{d})}\)换出来

就可以得到
\[{\sum_{d|n}^{}}(\mu (d)*\sum_{i|\frac{n}{d}}^{}g(i))\]

然后我们可以发现其实就是要满足

\[{d*i|n}\]

也可以这么理解,对于每一个二元组:

\[{(\mu (d),g(i))}\]

只需要保证每一个这样的二元组都能够被枚举到就好了

所以这个式子就可以变换为

\[{\sum_{i|n}^{}}(g(i)*\sum_{i*d|n}^{}\mu(d))\]

如果实在不理解可以带一个具体值进去手动模拟一下,可能就茅塞顿开了

然后我们可以再代换一下

就变成了

\[{\sum_{i|n}^{}}(g(i)*\sum_{d|\frac{n}{i}}^{}\mu(d))\]

看看后面的这一块,有没有想到我们美妙的性质1啊?

\({i=n}\)时,显然\({\sum_{d|\frac{n}{i}}^{}\mu(d)}=\)\({\sum_{d|1}^{}\mu(d)}=1\)

\({i\neq n}\)时,显然\({\frac{n}{i}>0}\),故此时这里就可以证得

\[{{g(n)=\sum_{d|n}^{}}f(\frac{n}{d})*\mu (d)} \]

完结撒花!!!


Upd:

莫比乌斯反演的另一种基本形式
\[{{g(n)=\sum_{n|d}^{}}f(d)*\mu (\frac{d}{n})} \]

也可以用上述类似的方法证明得到


习题

P3455&BZOJ1101 【[POI2007]ZAP-Queries】

转载于:https://www.cnblogs.com/HenryHuang-Never-Settle/p/10472218.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值