bzoj4176-Lucas的数论

题意


\[ \sum _{i=1}^n\sum _{j=1}^n\sigma (ij) \]
其中 \(\sigma(x)\) 为约数个数函数。

\(n\le 10^9\)

分析

拆开咯
\[ \begin{aligned} \sum _{i=1}^n\sum _{j=1}^n\sigma (ij)&=\sum _{i=1}^n\sum _{j=1}^n\sum _{d|ij}1 \\ &=\sum _{i=1}^n\sum _{j=1}^n\sum _{\frac{d}{\gcd(d,i)}|j}1 \\ &=\sum _{i=1}^n\sum _{j=1}^n\sum _{e|i}\sum _{a=1}^{\lfloor\frac{n^2}{e}\rfloor}[a|j][\gcd(a,\frac{i}{e})=1] \\ &=\sum _{i=1}^n\sum _{j=1}^n\sum _{e|i}\sum _{a|j}[\gcd(a,e)=1] \\ &=\sum _{i=1}^n\sum _{j=1}^n\sum _{e|i}\sum _{a|j}\sum _{d|a,d|e}\mu (d) \\ &=\sum _{d=1}^n\mu (d)\sum _{e=1}^{\lfloor\frac{n}{d}\rfloor}\sum _{e|i}\sum _{a=1}^{\lfloor\frac{n}{d}\rfloor}\sum _{a|j} \\ &=\sum _{d=1}^n\mu (d)(\sum _{e=1}^{\lfloor\frac{n}{d}\rfloor}\lfloor\frac{n}{de}\rfloor)^2 \end{aligned} \]
\(f(m)=\sum _{i=1}^m\lfloor\frac{m}{i}\rfloor\) ,那么
\[ \sum _{i=1}^n\sum _{j=1}^n\sigma (ij)=\sum _{d=1}^n\mu (d)f(\lfloor\frac{n}{d}\rfloor)^2 \]
前面的 \(\mu\) 用杜教筛,后面的 \(f\) 直接计算,复杂度为
\[ \int _0^\sqrt n (\sqrt x+\sqrt\frac{n}{x})dx=n^\frac{3}{4} \]
杜教筛中访问的都是 \(\frac{n}{x}\) 的形式,所以复杂度相当于一次杜教筛,也是 \(n^\frac{3}{4}\) (或预处理后的 \(n^\frac{2}{3}\) )。

数论题在推的时候一定要注意,枚举完之后看看是否有一些 \(\gcd\) 的限制,比如说上面枚举 \(a\) 的时候,之前就没有注意到,导致推出来一个错误的结果。

回到上面推导过程中的第四行,我们实际上推出了一个形式优美的等式:
\[ \sum _{i=1}^n\sum _{j=1}^n\sigma (ij)=\sum _{i=1}^n\sum _{j=1}^n\lfloor\frac{n}{i}\rfloor\lfloor\frac{n}{j}\rfloor [\gcd(i,j)=1] \]
观察推导过程,就能发现这个式子是可以拓展的:
\[ \sum _{a_1}\sum _{a_2}\sum _{a_3}\cdots\sigma(\prod a_i)=\sum _{a_1}\lfloor\frac{n}{a_1}\rfloor\sum _{a_2}\lfloor\frac{n}{a_2}\rfloor\sum _{a_3}\lfloor\frac{n}{a_3}\rfloor\cdots [两两\gcd 均为1] \]
推到最后就是 \(f\) 上面的指数发生变化。

很有趣的结论呢!

转载于:https://www.cnblogs.com/owenyu/p/7396447.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值