broadcasting Theano vs. Numpy
broadcast mechanism allows a scalar may be added to a matrix, a vector to a matrix or a scalar to a vecotor.
Examples

T and F stands for True and False respectively, denoting which dimension can be broadcasted.
Diference
- numpy broadcast dynamically;
- theano needs to knows, for any operations which supports broadcasting, which dimensions will need to be broadcasted.
Numpy Broadcasting
broadcasting describe how numpy treats arrays with difference shapes during arithmetic operations:
the smaller array is broadcast across the larger array so that they have compatible shapes
Simple Case
in this case, the two arrays must have exactly the same shape:
a=np.array([1.0,2.0,3.0])
b=np.array([2.0,2.0,2.0])
print a*b
>>> array([2., 4., 6.])
numpy broadcast mechanism relaxes this constraint when the arrays' shape meet certain constraints:
- they are equal, or
- one of them is 1
a=np.array([1.0,2.0,3.0])
b=2
print a*b
>>> array([2., 4., 6.])
rules
Image (3d array): 256 x 256 x 3
Scale (1d array): 3
Result (3d array): 256 x 256 x 3
A (4d array): 8 x 1 x 6 x 1
B (3d array): 7 x 1 x 5
Result (4d array): 8 x 7 x 6 x 5
more examples
A (2d array): 5 x 4
B (1d array): 1
Result (2d array): 5 x 4
A (2d array): 5 x 4
B (1d array): 4
Result (2d array): 5 x 4
A (3d array): 15 x 3 x 5
B (3d array): 15 x 1 x 5
Result (3d array): 15 x 3 x 5
A (3d array): 15 x 3 x 5
B (2d array): 3 x 5
Result (3d array): 15 x 3 x 5
A (3d array): 15 x 3 x 5
B (2d array): 3 x 1
Result (3d array): 15 x 3 x 5
本文详细解释了Numpy中的广播机制,这是一种允许不同形状数组进行算术运算的特性。通过具体例子展示了如何将较小的数组扩展到与较大数组兼容的形状,以便进行加法、乘法等操作。同时对比了Theano和Numpy在广播机制上的区别。
472

被折叠的 条评论
为什么被折叠?



