Vijos 1981 跳石头 二分

描述

一年一度的“跳石头”比赛又要开始了!
这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石。组委会已经选择好了两块岩石作为比赛起点和终点。在起点和终点之间,有 N 块岩石(不含起点和终 点的岩石)。在比赛过程中,选手们将从起点出发,每一步跳向相邻的岩石,直至到达终点。
为了提高比赛难度,组委会计划移走一些岩石,使得选手们在比赛过程中的最短跳 跃距离尽可能长。由于预算限制,组委会至多从起点和终点之间移走 M 块岩石(不能 移走起点和终点的岩石)。

格式

输入格式

输入第一行包含三个整数 L,N,M,分别表示起点到终点的距离,起点和终 点之间的岩石数,以及组委会至多移走的岩石数。
接下来 N 行,每行一个整数,第 i 行的整数di(0<di<L),表示第 i 块岩石与 起点的距离。这些岩石按与起点距离从小到大的顺序给出,且不会有两个岩石出现在同 一个位置。

输出格式

输出只包含一个整数,即最短跳跃距离的最大值。

样例1

样例输入1

25 5 2
2
11
14
17
21

样例输出1

4

限制

对于20%的数据,0\le M\le N\le 100≤M≤N≤10。
对于50%的数据,0\le M\le N\le 1000≤M≤N≤100。
对于100%的数据,0\le M\le N\le 500000≤M≤N≤50000,1\le L\le 10000000001≤L≤1000000000。

提示

对于样例。将与起点距离为 2 和 14 的两个岩石移走后,最短的跳跃距离为 4(从与起点距离17 的岩石跳到距离 21 的岩石,或者从距离 21 的岩石跳到终点)。

题解

这道题目用二分求解。二分最小距离的最大值,每次判断一个距离是不是只要使用小于等于m次的移除就能实现。
代码:

#include <iostream>
using namespace std;
int L, n, m, d[50050], res[50050], idx = 0;
bool check(int dis)
{
    int i = 0, j, cnt = 0;
    idx = 0;
    while (i <= n)
    {
        j = i + 1;
        while (j <= n && d[j] - d[i] < dis)
        {
            cnt ++;
            j ++;
        }
        i = j;
        if (i != n+1)
            res[idx++] = i;
    }
    while (idx > 0 && L - d[res[idx-1]] < dis)
    {
        cnt ++;
        idx --;
    }
    return cnt <= m;
}
int main()
{
    cin >> L >> n >> m;
    for (int i = 1; i <= n; i ++)
        cin >> d[i];
    d[0] = 0; d[n+1] = L;
    int left = 0, right = L;
    while (left <= right)
    {
        int mid = (left + right) / 2;
        if (check(mid))
            left = mid + 1;
        else
            right = mid - 1;
    }
    cout << left - 1 << endl;
    return 0;
}

转载于:https://www.cnblogs.com/xianyue/p/7015907.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值