sicp习题1.35和1.36解答

    本节内容介绍了将高阶过程用于一般性过程,举了两个例子:区间折半查找方程根和找出函数不动点。习题也是围绕这两个问题展开。今天工作上遇到了比较郁闷的事情,这周末确定要加班,心情实在糟糕!-_-,先做两题吧,有空再继续。

习题1.35,证明黄金分割率φ是变换x->x+1/x的不动点,并利用这个事实通过过程fixed-point计算出φ 值。

这道题目很简单了,根据黄金分割的定义,φ满足方程:φ的平方=φ+1;两边同除以φ,得到方程:
φ=φ+1/φ。根据函数不动点定义f(x)=x,可以得到φ就是变换x->x+1/x的不动点。利用fixed-point过程写出:
(fixed - point (lambda (x) ( +  x ( /   1  x)))  1.0 )

习题1.36解答:
首先修改fixed-point过程,使它输出每次猜测的近似值:
(define tolerance  0.00001 )
(define (
close - enough ?  v1 v2) ( <  ( abs  ( -  v1 v2)) tolerance))
(define (try f guess)
  (newline)
  (display guess)
  (let ((
next  (f guess)))
     (
if  ( close - enough ?  guess  next )
        
next
        (try f 
next ))))
(define (fixed
- point f first - guess)
    (try f first
- guess))
使用了newline和display基本过程,然后要求x->log(1000)/log(x)的不动点,并比较平均阻尼方式和非平均阻尼方式的计算步数。
首先,请看非平均阻尼方式(直接看截图了),我们以2作为初始猜测值:

可以看到,非平均阻尼方式执行了33步才计算出了x值。

再看平均阻尼方式,方程x=log(1000)/log(x)可以转化为:
x=(1/2)(x+log(1000)/log(x))

看看结果:

仅仅执行了9步就完成了计算,大概是非平均阻尼方式的1/3(在不同机器上可能结果不同,可平均阻尼一定快于不用平均阻尼)。

由此可见:使用平均阻尼技术比不用平均阻尼技术收敛的快得多。

117676.html

dennis 2007-05-15 18:44 发表评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值