Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
题目解析:
(1)A[m][n] = min(A[m-1][n]+grid[m][n] , A[m][n-1]+grid[m][n] ) 递归子结构
(2)单存的递归,显然时间是会超时的。因此我们使用备忘录的方式。
#include <iostream>
#include <vector>
using namespace std;
int recursionPathSum(int **A,vector<vector<int> > &grid,int m,int n);
int minPathSum(vector<vector<int> > &grid) {
int m = grid.size();
int n = grid[0].size();
int **A = (int **)malloc(sizeof(int *)*m);
for(int i=0;i<m;i++)
{
A[i] = (int *)malloc(sizeof(int)*n);
for(int j=0;j<n;j++)
{
A[i][j] = -1;
}
}
A[0][0] = grid[0][0];
return recursionPathSum(A,grid,m-1,n-1);
}
int recursionPathSum(int **A,vector<vector<int> > &grid,int m,int n)
{
if(A[m][n] != -1)
return A[m][n];
int result = 0;
if(m == 0)
{
for(int i=0;i<=n;i++)
{
result = result + grid[m][i];
}
A[0][n] = result;
return result;
}
if (n == 0)
{
for(int i=0;i<=m;i++)
{
result += grid[i][n];
}
A[m][0] = result;
return result;
}
int res = min(recursionPathSum(A,grid,m-1,n)+grid[m][n],recursionPathSum(A,grid,m,n-1)+grid[m][n]);
A[m][n] = res;
return res;
}
int main(void)
{
vector<vector<int> > grid;
vector<int> temp1;
temp1.push_back(1);
temp1.push_back(2);
grid.push_back(temp1);
vector<int> temp2;
temp2.push_back(3);
temp2.push_back(4);
grid.push_back(temp2);
vector<int> temp3;
temp3.push_back(5);
temp3.push_back(6);
grid.push_back(temp3);
cout << minPathSum(grid) << endl;
system("pause");
return 0;
}
本文介绍了一个经典的算法问题——寻找矩阵中从左上角到右下角的最小路径和,仅允许向右或向下移动。文章提供了详细的算法实现,包括递归方法及备忘录优化策略。
278

被折叠的 条评论
为什么被折叠?



