Minimum Path Sum

本文介绍了一个经典的算法问题——寻找矩阵中从左上角到右下角的最小路径和,仅允许向右或向下移动。文章提供了详细的算法实现,包括递归方法及备忘录优化策略。

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.


题目解析:

(1)A[m][n] = min(A[m-1][n]+grid[m][n] , A[m][n-1]+grid[m][n] ) 递归子结构

(2)单存的递归,显然时间是会超时的。因此我们使用备忘录的方式。


#include <iostream>
#include <vector>

using namespace std;


int recursionPathSum(int **A,vector<vector<int> > &grid,int m,int n);



int minPathSum(vector<vector<int> > &grid) {
	int m = grid.size();
	int n = grid[0].size();

	int **A = (int **)malloc(sizeof(int *)*m);
	for(int i=0;i<m;i++)
	{
		A[i] = (int *)malloc(sizeof(int)*n);
		for(int j=0;j<n;j++)
		{
			A[i][j] = -1;
		}
	}

	A[0][0] = grid[0][0];

	return recursionPathSum(A,grid,m-1,n-1);
}

int recursionPathSum(int **A,vector<vector<int> > &grid,int m,int n)
{
	if(A[m][n] != -1)
		return A[m][n];
	int result = 0;
	if(m == 0)
	{
		for(int i=0;i<=n;i++)
		{
			result = result + grid[m][i];
		}
		A[0][n] = result;
		return result;
	}
	if (n == 0)
	{
		for(int i=0;i<=m;i++)
		{
			result += grid[i][n];
		}
		A[m][0] = result;
		return result;
	}

	int res = min(recursionPathSum(A,grid,m-1,n)+grid[m][n],recursionPathSum(A,grid,m,n-1)+grid[m][n]);
	A[m][n] = res;
	return res;
}

int main(void)
{
	vector<vector<int> > grid;

	vector<int> temp1;
	temp1.push_back(1);
	temp1.push_back(2);
	grid.push_back(temp1);


	vector<int> temp2;
	temp2.push_back(3);
	temp2.push_back(4);
	grid.push_back(temp2);

	vector<int> temp3;
	temp3.push_back(5);
	temp3.push_back(6);
	grid.push_back(temp3);

	cout << minPathSum(grid) << endl;
	system("pause");
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值