什么是logging模块
logging模块是python提供的用于记录日志的模块
为什么需要logging
我们完全可以自己打开文件然后,日志写进去,但是这些操作重复且没有任何技术含量,所以python帮我们进行了封装,有了logging后我们在记录日志时 只需要简单的调用接口即可,非常方便!
日志级别
在开始记录日志前还需要明确,日志的级别
随着时间的推移,日志记录会非常多,成千上万行,如何快速找到需要的日志记录这就成了问题
解决的方案就是 给日志划分级别
logging模块将日志分为了五个级别,从高到低分别是:
1.info 常规信息
2.debug 调试信息
3.warning 警告信息
4.error 错误信息
5.cretical 严重错误
本质上他们使用数字来表示级别的,从高到低分别是10,20,30,40,50
logging模块的使用
#1.导入模块
import logging
#2.输出日志
logging.info("info")
logging.debug("debug")
logging.warning("warning")
logging.error("error")
logging.critical("critical")
#输出 WARNING:root:warning
#输出 ERROR:root:error
#输出 CRITICAL:root:critical
我们发现info 和 debug都没有输出,这是因为它们的级别不够,
默认情况下:
logging的最低显示级别为warning,对应的数值为30
日志被打印到了控制台
日志输出格式为:级别 日志生成器名称 日志消息
如何修改这写默认的行为呢?,这就需要我们自己来进行配置
自定义配置
import logging
logging.basicConfig()
"""可用参数
filename:用指定的文件名创建FiledHandler(后边会具体讲解handler的概念),这样日志会被存储在指定的文件中。
filemode:文件打开方式,在指定了filename时使用这个参数,默认值为“a”还可指定为“w”。
format:指定handler使用的日志显示格式。
datefmt:指定日期时间格式。
level:设置rootlogger(后边会讲解具体概念)的日志级别
"""
#案例:
logging.basicConfig(
filename="aaa.log",
filemode="at",
datefmt="%Y-%m-%d %H:%M:%S %p",
format="%(asctime)s - %(name)s - %(levelname)s - %(module)s: %(message)s",
level=10
)
格式化全部可用名称
%(name)s:Logger的名字,并非用户名,详细查看
%(levelno)s:数字形式的日志级别
%(levelname)s:文本形式的日志级别
%(pathname)s:调用日志输出函数的模块的完整路径名,可能没有
%(filename)s:调用日志输出函数的模块的文件名
%(module)s:调用日志输出函数的模块名
%(funcName)s:调用日志输出函数的函数名
%(lineno)d:调用日志输出函数的语句所在的代码行
%(created)f:当前时间,用UNIX标准的表示时间的浮 点数表示
%(relativeCreated)d:输出日志信息时的,自Logger创建以 来的毫秒数
%(asctime)s:字符串形式的当前时间。默认格式是 “2003-07-08 16:49:45,896”。逗号后面的是毫秒
%(thread)d:线程ID。可能没有
%(threadName)s:线程名。可能没有
%(process)d:进程ID。可能没有
%(message)s:用户输出的消息
至此我们已经可以自己来配置一 写基础信息了,但是当我们想要将同一个日志输出到不同位置时,这些基础配置就无法实现了,
例如 有一个登录注册的功能 需要记录日志,同时生成两份 一份给程序员看,一份给老板看,作为程序员应该查看较为详细的日志,二老板则应该简单一些,因为他不需要关心程序的细节
要实现这样的需要我们需要系统的了解loggin模块
logging模块的四个核心角色
1.Logger 日志生成器 产生日志
2.Filter 日志过滤器 过滤日志
3.Handler 日志处理器 对日志进行格式化,并输出到指定位置(控制台或文件)
4.Formater 处理日志的格式
一条日志完整的生命周期
1.由logger 产生日志 -> 2.交给过滤器判断是否被过滤 -> 3.将日志消息分发给绑定的所有处理器 -> 4处理器按照绑定的格式化对象输出日志
其中 第一步 会先检查日志级别 如果低于设置的级别则不执行
第二步 使用场景不多 需要使用面向对象的技术点 后续用到再讲
第三步 也会检查日志级别,如果得到的日志低于自身的日志级别则不输出
生成器的级别应低于句柄否则给句柄设置级别是没有意义的,
例如 handler设置为20 生成器设置为30
30以下的日志压根不会产生
第四步 如果不指定格式则按照默认格式
logging各角色的使用(了解)
# 生成器
logger1 = logging.getLogger("日志对象1")
# 文件句柄
handler1 = logging.FileHandler("log1.log",encoding="utf-8")
handler2 = logging.FileHandler("log2.log",encoding="utf-8")
# 控制台句柄
handler3 = logging.StreamHandler()
# 格式化对象
fmt1 = logging.Formatter(
fmt="%(asctime)s - %(name)s - %(levelname)s: %(message)s",
datefmt="%m-%d %H:%M:%S %p")
fmt2 = logging.Formatter(
fmt="%(asctime)s - %(levelname)s : %(message)s",
datefmt="%Y/%m/%d %H:%M:%S")
# 绑定格式化对象与文件句柄
handler1.setFormatter(fmt1)
handler2.setFormatter(fmt2)
handler3.setFormatter(fmt1)
# 绑定生成器与文件句柄
logger1.addHandler(handler1)
logger1.addHandler(handler2)
logger1.addHandler(handler3)
# 设置日志级别
logger1.setLevel(10) #生成器日志级别
handler1.setLevel(20) #句柄日志级别
# 测试
logger1.debug("debug msessage")
logger1.info("info msessage")
logger1.warning("warning msessage")
logger1.critical("critical msessage")
到此我们已经可以实现上述的需求了,但是这并不是我们最终的实现方式,因为每次都要编写这样的代码是非常痛苦的
logging的继承(了解)
可以将一个日志指定为另一个日志的子日志 或子孙日志
当存在继承关系时 子孙级日志收到日志时会将该日志向上传递
指定继承关系:
import logging
log1 = logging.getLogger("mother")
log2 = logging.getLogger("mother.son")
log3 = logging.getLogger("mother.son.grandson")
# handler
fh = logging.FileHandler(filename="cc.log",encoding="utf-8")
# formatter
fm = logging.Formatter("%(asctime)s - %(name)s -%(filename)s - %(message)s")
# 绑定
log1.addHandler(fh)
log2.addHandler(fh)
log3.addHandler(fh)
# 绑定格式
fh.setFormatter(fm)
# 测试
# log1.error("测试")
# log2.error("测试")
log3.error("测试")
# 取消传递
log3.propagate = False
# 再次测试
log3.error("测试")
通过字典配置日志模块(重点)
每次都要编写代码来配置非常麻烦 ,我们可以写一个完整的配置保存起来,以便后续直接使用
import logging.config
logging.config.dictConfig(LOGGING_DIC)
logging.getLogger("aa").debug("测试")
LOGGING_DIC模板
standard_format = '[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]' \
'[%(levelname)s][%(message)s]' #其中name为getlogger指定的名字
simple_format = '[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s'
id_simple_format = '[%(levelname)s][%(asctime)s] %(message)s'
logfile_path = "配置文件路径"
LOGGING_DIC = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {
'standard': {
'format': standard_format
},
'simple': {
'format': simple_format
},
},
'filters': {},
'handlers': {
#打印到终端的日志
'console': {
'level': 'DEBUG',
'class': 'logging.StreamHandler', # 打印到屏幕
'formatter': 'simple'
},
#打印到文件的日志,收集info及以上的日志
'default': {
'level': 'DEBUG',
'class': 'logging.handlers.RotatingFileHandler', # 保存到文件
'formatter': 'standard',
'filename': logfile_path, # 日志文件
'maxBytes': 1024*1024*5, # 日志大小 5M
'backupCount': 5, #日志文件最大个数
'encoding': 'utf-8', # 日志文件的编码
},
},
'loggers': {
#logging.getLogger(__name__)拿到的logger配置
'aa': {
'handlers': ['default', 'console'], # 这里把上面定义的两个handler都加上,即log数据既写入文件又打印到屏幕
'level': 'DEBUG',
'propagate': True, # 向上(更高level的logger)传递
},
},
}
补充:
getLogger参数就是对应字典中loggers的key , 如果没有匹配的key 则返回系统默认的生成器,我们可以在字典中通过空的key来将一个生成器设置为默认的
'loggers': {
# 把key设置为空
'': {
'handlers': ['default', 'console'], # 这里把上面定义的两个handler都加上,即log数据既写入文件又打印到屏幕
'level': 'DEBUG',
'propagate': True, # 向上(更高level的logger)传递
},
},
,往后在使用时可以这调用模块提供的函数,来输出日志
logging.info("测试信息!")
另外我们在第一次使用日志时并没有指定生成器,但也可以使用,这是因为系统有默认的生成器名称就叫root
最后来完成之前的需求:
有一个登录注册的功能 需要记录日志,同时生成两份 一份给程序员看,一份给老板看,作为程序员应该查看较为详细的日志,二老板则应该简单一些,因为他不需要关心程序的细节
# 程序员看的格式
standard_format = '[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]' \
'[%(levelname)s][%(message)s]' #其中name为getlogger指定的名字
logfile_path1 = "coder.log"
# 老板看的格式
simple_format = '[%(levelname)s][%(asctime)s]%(message)s'
logfile_path2 = "boss.log"
LOGGING_DIC = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {
'standard': {
'format': standard_format
},
'simple': {
'format': simple_format
},
},
'filters': {},
'handlers': {
#打印到终端的日志
'console': {
'level': 'DEBUG',
'class': 'logging.StreamHandler', # 打印到屏幕
'formatter': 'simple'
},
#打印到文件的日志,收集info及以上的日志
'std': {
'level': 'DEBUG',
'class': 'logging.handlers.RotatingFileHandler', # 保存到文件
'formatter': 'standard',
'filename': logfile_path1, # 日志文件
'maxBytes': 1024*1024*5, # 日志大小 5M
'backupCount': 5, #日志文件最大个数
'encoding': 'utf-8', # 日志文件的编码
},
'boss': {
'level': 'DEBUG',
'class': 'logging.handlers.RotatingFileHandler', # 保存到文件
'formatter': 'simple',
'filename': logfile_path2, # 日志文件
'maxBytes': 1024 * 1024 * 5, # 日志大小 5M
'backupCount': 5, # 日志文件最大个数
'encoding': 'utf-8', # 日志文件的编码
}
},
'loggers': {
#logging.getLogger(__name__)拿到的logger配置
'aa': {
'handlers': ['std', 'console',"boss"], # 这里把上面定义的handler都加上,即log数据会同时输出到三个位置
'level': 'INFO',
'propagate': True, # 向上(更高level的logger)传递
},
},
}
步骤: 定义日志文件路径:log_path
fliename= log_path
3 'logger' 定义日志名
4 ‘prooagate’ 是否继承
5 import logging.config
logging.config.dicconfig( logging_dic) 导入配置字典
6 import logging
11= logging.getlogger(' ') 拿到日志名
7 11.debug('测试') 警告级别
日志通过的两层关卡: logger level
handler level
import logging.config standard_format = '[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]' \ '[%(levelname)s][%(message)s]' #其中name为getlogger指定的名字 simple_format = '[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s' id_simple_format = '[%(levelname)s][%(asctime)s] %(message)s' logfile_path = r"C:\Users\GUANCHAO\Desktop\python_gc\class_work\第17天\01_常用模块.py" LOGGING_DIC = { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'standard': { 'format': standard_format }, 'simple': { 'format': simple_format }, }, 'filters': {}, 'handlers': { #打印到终端的日志 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', # 打印到屏幕 'formatter': 'simple' }, #打印到文件的日志,收集info及以上的日志 'default': { 'level': 'DEBUG', 'class': 'logging.handlers.RotatingFileHandler', # 保存到文件 'formatter': 'standard', 'filename': logfile_path, # 日志文件 'maxBytes': 1024*1024*5, # 日志大小 5M 'backupCount': 5, #日志文件最大个数 'encoding': 'utf-8', # 日志文件的编码 }, }, 'loggers': { #logging.getLogger(__name__)拿到的logger配置 'babao': { 'handlers': ['default', 'console'], # 这里把上面定义的两个handler都加上,即log数据既写入文件又打印到屏幕 'level': 'DEBUG', 'propagate': False, # 向上(更高level的logger)传递 }, }, } import os #logging_config.py logging.config.dictConfig(LOGGING_DIC) import logging a=logging.getLogger('babao') a.debug('测试')