转载自:http://diaocow.iteye.com/blog/1935091
要看懂redis代码,其中重要的一步就是要看懂它里面所使用的数据结构,而在这不算少的数据结构中,最重要的就是字典,它几乎就是redis实现各种功能的骨架,所以理解好字典至关重要!
redis作为一个nosql数据库,所有的key-value都是存储在一个字典中,而字典则是用哈希表实现的;关于哈希表原理,随便上网查一下都能找到一大堆资料,因此这里我也不想做过多赘述,直接开门见山,看下在redis中哈希表是什么样的:
上图所示结构对应代码如下:
- // 字典
- typedef struct dict {
- // 哈希表(2个)
- dictht ht[2];
- // rehash索引,若rehashidx == -1,则表示未开始进行rehash,
- // 否则rehashidx的值表示rehash正进行到ht[0]这个hash表上哪个索引节点
- int rehashidx;
- // 安全迭代器数量
- int iterators;
- } dict;
- // 哈希表
- typedef struct dictht {
- // 哈希表 (指向一个dictEntry*数组,俗称“桶”)
- dictEntry **table;
- // 哈希表大小
- unsigned long size;
- // 位掩码,通过hash_value & sizemask得出节点在哈希表索引
- unsigned long sizemask;
- // 哈希表中节点数量
- unsigned long used;
- } dictht;
- // 哈希节点
- typedef struct dictEntry {
- // 键
- void *key;
- // 值
- union {
- void *val;
- uint64_t u64;
- int64_t s64;
- } v;
- // 指向下一个节点
- struct dictEntry *next;
- } dictEntry;
关于redis中的字典,最特别的无疑是dict中维护着两个哈希表(ht[0],ht[1]),为什么要有两个呢?在解释这个之前我们先看下哈希表的rehash;
rehash目的:
当我们不断的往哈希表(ht[0])插入新的键值对,如果两个键的hash值相同,那么它们将以链表的形式放入到同一个“桶”中,如下图key1和key4:
这样带来的问题就是,随着我们往哈希表里插入越来越多的键值对,哈希表性能会急剧下降(查找操作都退化成链表查找);所以,我们就需要扩大原来的哈希表,使得哈希表大小和哈希表中的节点数的比例能够维持在1:1(dictht.size:dictht.used),这时候哈希表才能达到最佳查询性能O(1)
rehash过程:
创建一个新的哈希表,大小是当前的两倍(准确说还必须是2的幂次),然后把全部键值对重新散列到新的哈希表中,最后再用它替换原来的哈希表;
rehash问题:
我们考虑下面一种情况:客户端A插入一个键值对,这时候发现dictht.used与dictht.size的比例大于1(查询性能开始下降),于是执行rehash操作,假设目前哈希表中有10万个键值对,那么redis就会一直埋头苦干,直到完成对这个10万个键值对的rehash操作,并且在这个过程中,其他客户端请求都会被阻塞(因为redis是单线程);很显然我们是无法忍受这种情况的发生,那redis是如何解决这个问题呢?
渐进式rehash:
“渐进式”意味着rehash过程不是一次做完而是每次做一点,这样就可以避免由于rehash过程太久导致其他客户端请求被阻塞,具体过程如下:
1. 在ht[1]上分配一个更大的哈希表;
2. “分多次”把ht[0]上的键值对重新散列到ht[1]上;
3. 当处理完所有键值对时,让ht[0]指向新的哈希表;
现在还有一个问题,我们说了 “分多次把ht[0]上的键值对重新散列到ht[1]上” ,那么这个分多次究竟是多少次?并且每次处理多少键值对才最合适?
redis准备rehash时,会把dict.rehashidx置为0(标示rehash开始),然后当执行任意一个哈希表操作(添加,删除,查找等),就会执行一次_dictRehashStep函数;
_dictRehashStep函数每次rehash把ht[0]上的第一个不为空索引上的全部键值对迁移到ht[1]上,并且用dict.rehashidx的值标示当前rehash正进行到了哪个索引;
也就是说按照上图,第一次迁移key1,key4键值对(这时候dict.rehashidx的值为0),第二次迁移key2键值对(这时候dict.rehashidx的值为1),第三次迁移key3键值对(这时候dict.rehashidx的值为2),至此rehash完毕(dict.rehashidx被复位成-1),相关伪代码:
- # 任意dict操作(添加,删除,查找)
- def anyDictOperation(dict):
- # 如果正在进行rehash
- if dict.rehashidx != -1:
- _dictRehashStep(dict)
- # 执行字典操作
- dictOperation(dict)
- def _dictRehashStep(dict):
- # 如果当前安全迭代器数量不为0,暂停此次rehash
- if dict.iterators > 0 : return
- idx = dict.rehashidx
- # 获取第一个不为空的索引
- while len(dict.ht[0].table[idx]) <= 0:
- idx++
- # 迁移该索引节点上的所有键值对到ht[1]上
- for key, val in dict.ht[0].table[idx].getKeyValuePairs:
- redisServer.ht[0].table.used--
- redisServer.ht[1].table.used++
- redisServer.ht[1].table.hash(key, val)
- # 当所有键值对迁移完毕,用新的哈希表替换老的,并且重置ht[1]
- if dict.ht[0].table.used == 0:
- dict.ht[0] = dict.ht[1]
- dict.ht[1].reset()
- dict.rehashindx = -1 # 复位
另外,redis在服务器执行例行任务时(serverCron),也会定期去做一部分rehash操作,伪代码:
- def serverCron():
- # 循环redis所有数据库
- for num in redisServer.dbnums:
- if redisServer.db[num].dict.rehashidx != -1 :
- # 第二个参数用来限制rehash执行多久,单位毫秒
- dictRehashMilliseconds(redisServer.db[num].dict, 1)
- # 其他例行任务...
- def dictRehashMilliseconds(dict, timeout_ms):
- start_time = now_time()
- while now_time() - start_time < timeout_ms:
- _dictRehashStep(dict)
至此,我们已经分析完:为什么要在dict中维护两个哈希表(ht[0],ht[1]);
关于redis字典的更多细节,请参看:dict.h和dict.c代码以及redis.c/serverCron函数
总结:
1.了解redis中字典是如何设计的以及这样设计的原因;
2.了解哈希表的rehash过程以及rehash时机;