洛谷P3959 [NOIP2017]宝藏

【题目描述】

 

参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋,也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度。

小明决心亲自前往挖掘所有宝藏屋中的宝藏。但是,每个宝藏屋距离地面都很远,也就是说,从地面打通一条到某个宝藏屋的道路是很困难的,而开发宝藏屋之间的道路则相对容易很多。

小明的决心感动了考古挖掘的赞助商, 赞助商决定免费赞助他打通一条从地面到某个宝藏屋的通道,通往哪个宝藏屋则由小明来决定。

在此基础上, 小明还需要考虑如何开凿宝藏屋之间的道路。已经开凿出的道路可以任意通行不消耗代价。每开凿出一条新道路,小明就会与考古队一起挖掘出由该条道路所能到达的宝藏屋的宝藏。另外,小明不想开发无用道路,即两个已经被挖掘过的宝藏屋之间的道路无需再开发。

新开发一条道路的代价是:

这条道路的长度 × 从赞助商帮你打通的宝藏屋到这条道路起点的宝藏屋所经过的宝藏屋的数量(包括赞助商帮你打通的宝藏屋和这条道路起点的宝藏屋)。

请你编写程序为小明选定由赞助商打通的宝藏屋和之后开凿的道路,使得工程总代价最小,并输出这个最小值。 

 

【输入格式】

 

第一行两个用空格分离的正整数 n 和 m,代表宝藏屋的个数和道路数。

接下来 m 行,每行三个用空格分离的正整数,分别是由一条道路连接的两个宝藏屋的编号(编号为 1~n),和这条道路的长度 v。 

 

【输出格式】

 

输出共一行,一个正整数,表示最小的总代价。 

 

【样例输入1】

4 5
1 2 1
1 3 3
1 4 1
2 3 4
3 4 1

【样例输出1】

4

【样例1提示】

【样例输入2】

4 5
1 2 1
1 3 3
1 4 1
2 3 4
3 4 2

【样例输出2】

5

【样例2提示】

【数据规模】

 

对于 20%的数据:

保证输入是一棵树, 1≤n≤8, v≤5000 且所有的 v 都相等。

对于 40%的数据:

1≤n≤8, 0≤m≤1000, v≤5000 且所有的 v 都相等。

对于 70%的数据:

1≤n≤8, 0≤m≤1000, v≤ 5000

对于 100%的数据:

1≤n≤12, 0≤m≤1000, v≤ 500000

 

就把这道NOIP题当成回坑以后第一篇博吧(丢人

数据范围一眼状压DP,然而好像已经忘了DP怎么玩了

一顿胡乱撕烤,脑洞出一个常数巨大的解法。

F[a]表示联通状态为a的最优方案,G[a][]记录状态a的最优方案对应的每个结点深度,枚举边更新

注意到边数远超过完全图,可以预处理删掉无用边。

然而状态挂在了vector上常数过大,在洛谷上T了一个点,开O2可以A,假装自己过掉了(逃

(UPD6.15 突然发现代码放错了 噫呜呜噫)

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 #include<cmath>
 6 #include<vector>
 7 using namespace std;
 8 typedef long long LL;
 9 int n,m;
10 const int mxn=2010;
11 const int N=1<<13;
12 struct edge{
13     int u,v,w;
14     int next;
15 }e[mxn<<1];
16 int hd[mxn],cnt=0;
17 void add_edge(int u,int v,int w){
18     e[++cnt].u=u;e[cnt].v=v;e[cnt].w=w;
19     e[cnt].next=hd[u];hd[u]=cnt;
20     return;
21 }
22 int f[N];
23 struct node{
24     int dep[12];
25 };
26 vector<node>g[N];
27 //
28 
29 node tt,a;
30 void solve(){
31     int tmp=1<<n;
32     for(int i=1;i<=n;i++){
33         f[1<<(i-1)]=0;
34         tt.dep[i-1]=1;
35         g[1<<(i-1)].push_back(tt);
36         tt.dep[i-1]=0;
37     }
38     for(int i=1;i<tmp;i++){
39 //        printf("tmp:%d  %d\n",i,f[i]);
40         for(int u=0;u<n;u++){
41             if( (i&(1<<u)) ){
42 //                printf(" u:%d\n",u);
43                 for(int now=0;now<g[i].size();now++){
44 //                    printf("   now:%d\n",now);
45                     for(int h=hd[u];h;h=e[h].next){
46                         
47                         int v=e[h].v;
48 //                        printf("   v:%d\n",v);
49                         if(i&(1<<v))continue;
50 //                        printf("   v:%d\n",v);
51                         
52                         int tar=i|(1<<v);
53 //                        printf("    tar:%d\n",tar);
54                         if(f[tar] > f[i] + e[h].w*g[i][now].dep[u] ){
55                             f[tar] = f[i] + e[h].w*g[i][now].dep[u];
56                             a=g[i][now];
57                             a.dep[v]=g[i][now].dep[u]+1;
58                             g[tar].clear();
59                             g[tar].push_back(a);
60                             a.dep[v]=0;
61                         }
62                         else if(f[tar]== (f[i] + e[h].w*g[i][now].dep[u])){
63                             a=g[i][now];
64                             a.dep[v]=g[i][now].dep[u]+1;
65                             g[tar].push_back(a);
66                             a.dep[v]=0;
67                         }
68                     }
69                 }
70             }
71         }
72     }
73     return;
74 }
75 int mp[15][15];
76 int main(){
77     int i,j,u,v,w;
78     scanf("%d%d",&n,&m);
79     memset(mp,0x3f,sizeof mp);
80     for(i=1;i<=m;i++){
81         scanf("%d%d%d",&u,&v,&w);
82         --u;--v;
83         mp[u][v]=mp[v][u]=min(mp[u][v],w);
84     }
85     for(i=0;i<n;i++)
86         for(j=0;j<n;j++)
87             if(mp[i][j]<0x3f3f3f3f)
88                 add_edge(i,j,mp[i][j]);
89     memset(f,0x3f,sizeof(f));
90     solve();
91     printf("%d\n",f[(1<<n)-1]);
92     return 0;
93 }
View Code

 

 

更好的解法是f[a][dep]记录联通状态为a,最深的点深度为dep的最优解,进行转移。

 

转载于:https://www.cnblogs.com/SilverNebula/p/9175203.html

内容概要:本文围绕“风光制氢合成氨系统优化研究”展开,基于Matlab代码实现对风能、光伏等可再生能源耦合制氢及进一步合成氨的综合能源系统进行建模与优化分析。研究涵盖系统容量配置与运行调度的协同优化,考虑风光出力不确定性、电解槽制氢效率、合成氨能耗特性等因素,构建数学模型并采用优化工具(如YALMIP+CPLEX)求解,旨在降低系统综合成本、提升可再生能源消纳能力。文中提供完整的代码实现路径,支持论文复现,帮助理解系统架构、能量流管理及优化算法应用。; 适合人群:具备一定电力系统、能源系统背景,熟悉Matlab编程,从事可【论文复现】风光制氢合成氨系统优化研究(Matlab代码实现)再生能源、综合能源系统、氢能利用等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①复现高水平论文中的风光制氢合成氨系统优化模型;②掌握YALMIP建模语言在能源系统优化中的应用;③开展类似多能互补系统(如风电/光伏/电解槽/储氢/合成氨)的建模与仿真研究;④支撑科研项目、论文写作或课程设计中的案例开发与算法验证。; 阅读建议:建议结合文中提到的网盘资源下载完整代码与数据,按照目录顺序逐步学习,重点关注系统建模思路、约束条件设定与目标函数构建,并动手调试运行代码以加深理解;同时可对比Python版本实现,拓展编程与应用场景。
NOIP2017(全国青少年信息学奥林匹克联赛)的题目涵盖了多个算法与数据结构方面的挑战,包括模拟、图论、动态规划等。以下是一些NOIP2017提高组的题目参考代码,供学习和训练使用。 ### 1. **时间复杂度分析(T3)** 该题要求根据伪代码判断程序的时间复杂度。核心在于解析循环结构,判断嵌套与并列关系,并计算复杂度。 ```cpp #include <bits/stdc++.h> using namespace std; int T, n; string s; stack<int> st; // 用于记录循环深度 int max_depth; void process() { max_depth = 0; while (!st.empty()) st.pop(); int depth = 0; for (int i = 0; i < n; ++i) { cin >> s; if (s == "F") { string var, start, end; cin >> var >> start >> end; int s_val = stoi(start), e_val = stoi(end); if (s_val <= e_val) { depth++; st.push(e_val - s_val + 1); max_depth = max(max_depth, depth); } else { // 循环体不执行 st.push(0); depth++; } } else if (s == "E") { if (!st.empty()) { st.pop(); depth--; } } } } int main() { cin >> T; for (int t = 1; t <= T; ++t) { cin >> n; process(); cout << "Case #" << t << ": " << max_depth << endl; } return 0; } ``` ### 2. **奶酪问题(T2)** 给定一个三维空间中的奶酪块,内部有若干球形孔洞,判断是否可以从底部走到顶部。使用并查集处理连通性问题。 ```cpp #include <bits/stdc++.h> using namespace std; const int maxn = 1005; int fa[maxn]; struct Sphere { long long x, y, z, r; } spheres[maxn]; int find(int x) { return x == fa[x] ? x : fa[x] = find(fa[x]); } void unite(int x, int y) { int fx = find(x), fy = find(y); if (fx != fy) fa[fx] = fy; } long long dist2(Sphere a, Sphere b) { return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y) + (a.z - b.z) * (a.z - b.z); } bool is_connect(Sphere a, Sphere b) { return dist2(a, b) <= (a.r + b.r) * (a.r + b.r); } int main() { int T; cin >> T; while (T--) { int n; long long h; cin >> n >> h; for (int i = 0; i < n; ++i) { cin >> spheres[i].x >> spheres[i].y >> spheres[i].z >> spheres[i].r; fa[i] = i; } for (int i = 0; i < n; ++i) { for (int j = i + 1; j < n; ++j) { if (is_connect(spheres[i], spheres[j])) { unite(i, j); } } } // 判断底部和顶部是否连通 bool ok = false; for (int i = 0; i < n; ++i) { if (spheres[i].z - spheres[i].r <= 0) { for (int j = 0; j < n; ++j) { if (spheres[j].z + spheres[j].r >= h) { if (find(i) == find(j)) { ok = true; break; } } } if (ok) break; } } cout << (ok ? "Yes" : "No") << endl; } return 0; } ``` ### 3. **小明搬家(T1)** 给出一个图,判断是否存在欧拉回路。若存在,则输出“YES”,否则输出“NO”。 ```cpp #include <bits/stdc++.h> using namespace std; const int maxn = 1005; int degree[maxn]; bool visited[maxn]; vector<int> adj[maxn]; void dfs(int u) { visited[u] = true; for (int v : adj[u]) { if (!visited[v]) dfs(v); } } int main() { int T; cin >> T; while (T--) { int n, m; cin >> n >> m; memset(degree, 0, sizeof(degree)); memset(visited, false, sizeof(visited)); for (int i = 1; i <= n; ++i) adj[i].clear(); for (int i = 0; i < m; ++i) { int u, v; cin >> u >> v; adj[u].push_back(v); adj[v].push_back(u); degree[u]++; degree[v]++; } // 判断是否连通 dfs(1); bool connected = true; for (int i = 1; i <= n; ++i) { if (degree[i] > 0 && !visited[i]) { connected = false; break; } } // 判断是否所有点度数为偶数 bool all_even = true; for (int i = 1; i <= n; ++i) { if (degree[i] % 2 != 0) { all_even = false; break; } } if (connected && all_even) cout << "YES" << endl; else cout << "NO" << endl; } return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值