stem():
pwelch():
y = wgn(m,n,p) 产生一个m行n列的高斯白噪声的矩阵,p以dBW为单位指定输出噪声的强度
xcorr(x.maxlags) 求一个随机信号序列x(n)的自相关函数,maxlags为最大延迟
[c,lags]=xcorr(x,y[,maxlags,'option'])计算互相关函数,c为x,y的互相关估计,lags为相关估计c的序号向量,其范围是[-maxlags,maxlags]
stem():
pwelch():
y = wgn(m,n,p) 产生一个m行n列的高斯白噪声的矩阵,p以dBW为单位指定输出噪声的强度
xcorr(x.maxlags) 求一个随机信号序列x(n)的自相关函数,maxlags为最大延迟
[c,lags]=xcorr(x,y[,maxlags,'option'])计算互相关函数,c为x,y的互相关估计,lags为相关估计c的序号向量,其范围是[-maxlags,maxlags]
转载于:https://www.cnblogs.com/tracylining/articles/3068953.html