高效部署文本嵌入模型:使用Hugging Face TEI实现文本分类

引言

在自然语言处理(NLP)任务中,文本嵌入是一个关键步骤。Hugging Face的Text Embeddings Inference (TEI) 是一个出色的工具,它为热门模型如FlagEmbedding、Ember、GTE和E5提供了高性能的部署和服务支持。本篇文章将介绍如何使用TEI进行文本嵌入,并在langchain中使用这些结果。

主要内容

安装必要的软件包

在使用Hugging Face TEI之前,首先需要确保安装huggingface-hub

%pip install --upgrade huggingface-hub

使用Docker部署模型

我们将通过Docker来部署BAAI/bge-large-en-v1.5模型。这样可以确保每次运行时不需要重新下载模型权重。

model=BAAI/bge-large-en-v1.5
revision=refs/pr/5
volume=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值