引言
在自然语言处理(NLP)任务中,文本嵌入是一个关键步骤。Hugging Face的Text Embeddings Inference (TEI) 是一个出色的工具,它为热门模型如FlagEmbedding、Ember、GTE和E5提供了高性能的部署和服务支持。本篇文章将介绍如何使用TEI进行文本嵌入,并在langchain中使用这些结果。
主要内容
安装必要的软件包
在使用Hugging Face TEI之前,首先需要确保安装huggingface-hub
。
%pip install --upgrade huggingface-hub
使用Docker部署模型
我们将通过Docker来部署BAAI/bge-large-en-v1.5
模型。这样可以确保每次运行时不需要重新下载模型权重。
model=BAAI/bge-large-en-v1.5
revision=refs/pr/5
volume=