dggv19544
码龄11年
求更新 关注
提问 私信
  • 博客:942
    942
    总访问量
  • 暂无
    原创
  • 1
    粉丝
  • 0
    关注
加入CSDN时间: 2014-11-04
博客简介:

dggv19544的博客

查看详细资料
个人成就
  • 获得0次点赞
  • 内容获得0次评论
  • 获得1次收藏
  • 博客总排名1,673,918名
  • 原力等级
    原力等级
    0
    原力分
    0
    本月获得
    0
创作历程
  • 3篇
    2018年

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

创作活动更多

『技术文档』写作方法征文挑战赛

在技术的浩瀚海洋中,一份优秀的技术文档宛如精准的航海图。它是知识传承的载体,是团队协作的桥梁,更是产品成功的幕后英雄。然而,打造这样一份出色的技术文档并非易事。你是否在为如何清晰阐释复杂技术而苦恼?是否纠结于文档结构与内容的完美融合?无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

55人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

衡量机器学习模型的三大指标:准确率、精度和召回率。

连接来源:http://mp.weixin.qq.com/s/rXX0Edo8jU3kjUUfJhnyGw  倾向于使用准确率,是因为熟悉它的定义,而不是因为它是评估模型的最佳工具! 精度(查准率)和召回率(查全率)等指标对衡量机器学习的模型性能是非常基本的,特别是在不平衡分布数据集的案例中,在周志华教授的「西瓜书」中就特别详细地介绍了这些概念。  什么是分布不平衡的数据集?...
转载
发布博客 2018.04.17 ·
437 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Figure 1.1

Figure 1.1实现prostate cancer的散点矩阵图#从本地文件读取数据A=read.table("E:\\统计学习\\ESL-example\\Chpt.3\\3.2.1 Prostate Cancer\\Prostate.txt",header=T)#为了跟课本一致,进行数据列的重排列。这里A[c()]是用来选择数据列的#A[c(1,2)]选择1...
转载
发布博客 2018.03.20 ·
331 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

3.0 Linear Regression基础-一元线性回归

前言:  这一节,作为线性回归的基础,我们好好从统计的角度讨论一下线性回归。机器学习的算法,大多是以回归为基础,无非是加以修改以适应于相应场景罢了。1.  随机变量,噪声(1)模型 x不是随机变量。是噪声,记录的所有随机因素,是随机变量。这里我们假设服从高斯分布y是随机变量,因为取决于。(2)训练集得到回归模型,是随机变量。因为系数来自于训练集,训练...
转载
发布博客 2018.03.24 ·
174 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏