要求 a a a的 b b b次方的末尾三位数,可以使用数论中的快速幂算法。具体步骤如下:
- 将 b b b转化为二进制数。
- 从二进制数的最低位开始,依次计算出 a a a的1次方、2次方、4次方、8次方…直到 b b b的二进制数中最高位对应的幂次方。
- 将这些幂次方相乘,即可得到 a a a的 b b b次方的值。
- 将 b b b转化为二进制数后,若某一位上的数字为1,则将该位对应的幂次方乘到结果中。
- 最后将结果模1000,即可得到 a a a的 b b b次方的末尾三位数。
以下是一个Python代码示例:
def quick_power(a, b):
res = 1
while b:
if b & 1:
res = res * a % 1000
a = a * a % 1000
b >>= 1
return res
a = int(input("请输入底数a:"))
b = int(input("请输入指数b:"))
print("{}的{}次方的末尾三位数是{}".format(a, b, quick_power(a, b)))