URAL1017——DP——Staircases

本文介绍了一个关于砖块排列组合的算法问题,旨在利用动态规划求解由特定数量砖块构成的不同楼梯形态数目。通过递推公式dp[i][j]+=dp[i-j][0..j-1]实现状态转移,最终得出所有可能的楼梯组合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

One curious child has a set of  N little bricks (5 ≤  N ≤ 500). From these bricks he builds different staircases. Staircase consists of steps of different sizes in a strictly descending order. It is not allowed for staircase to have steps equal sizes. Every staircase consists of at least two steps and each step contains at least one brick. Picture gives examples of staircase for  N=11 and  N=5:
Problem illustration
Your task is to write a program that reads the number  N and writes the only number  Q — amount of different staircases that can be built from exactly  N bricks.

Input

Number  N

Output

Number  Q

Sample Input

inputoutput
212
995645335

大意:n块砖头,让你排成一个楼梯,满足列数大于2,并且后面列的高度大于前面列的高度所有可能的情况种类

初始化:dp[i][i] = 1 表示一共有i块砖头,在当前(也就是最后一列)把所有的砖块都放上只有一种

状态转移方程  dp[i][j] += dp[i-j][0..j-1] 一共i个砖块最后一列为j个 状态是由前面一个状态转移过来的 即少了最后一列砖块现在变成i-j块的所有的情况,这个k必须小于j,最后答案就是dp[n][0..n-1] 除了一共有n块,最后一列全是n的情况,开long long orz

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
long long dp[550][550];
int main()
{
int n;
while(~scanf("%d",&n)){
    memset(dp,0,sizeof(dp));
    for(int i = 1; i <= n ;i++)
        dp[i][i] = 1;
    //用了i块砖头,当前有i块砖头
    for(int i = 1; i <= n ;i++){
        for(int j = 1; j < i ;j++){
            for(int k = 0; k < j ;k++){
                dp[i][j] += dp[i-j][k];
            }
        }
    }
    long long ans = 0;
    for(int i = 0 ; i < n;i++)
        ans += 1ll*dp[n][i];
    printf("%lld\n",ans);
    }
return 0;
}

  

 

转载于:https://www.cnblogs.com/zero-begin/p/4488947.html

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值